Cargando…
Guided Depth Completion with Instance Segmentation Fusion in Autonomous Driving Applications
Pixel-level depth information is crucial to many applications, such as autonomous driving, robotics navigation, 3D scene reconstruction, and augmented reality. However, depth information, which is usually acquired by sensors such as LiDAR, is sparse. Depth completion is a process that predicts missi...
Autores principales: | El-Yabroudi, Mohammad Z., Abdel-Qader, Ikhlas, Bazuin, Bradley J., Abudayyeh, Osama, Chabaan, Rakan C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781309/ https://www.ncbi.nlm.nih.gov/pubmed/36559946 http://dx.doi.org/10.3390/s22249578 |
Ejemplares similares
-
CompleteInst: An Efficient Instance Segmentation Network for Missed Detection Scene of Autonomous Driving
por: Wang, Hai, et al.
Publicado: (2023) -
A Model for Urban Environment Instance Segmentation with Data Fusion
por: Du, Kaiyue, et al.
Publicado: (2023) -
Instance Sequence Queries for Video Instance Segmentation with Transformers
por: Xu, Zhujun, et al.
Publicado: (2021) -
Real-time depth completion based on LiDAR-stereo for autonomous driving
por: Wei, Ming, et al.
Publicado: (2023) -
SemanticDepth: Fusing Semantic Segmentation and Monocular Depth Estimation for Enabling Autonomous Driving in Roads without Lane Lines
por: Palafox, Pablo R., et al.
Publicado: (2019)