Cargando…

Performance of PEO/Polymer Coatings on the Biodegradability, Antibacterial Effect and Biocompatibility of Mg-Based Materials

Magnesium (Mg) alloys have recently attracted attention in biomedicine as biodegradable materials with non-toxic degradable products. Such compounds have become a frontier in the study of biodegradable materials because of their remarkable biomechanical compatibility and superior biocompatibility. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Fattah-alhosseini, Arash, Chaharmahali, Razieh, Rajabi, Armin, Babaei, Kazem, Kaseem, Mosab
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781375/
https://www.ncbi.nlm.nih.gov/pubmed/36547527
http://dx.doi.org/10.3390/jfb13040267
_version_ 1784857058663727104
author Fattah-alhosseini, Arash
Chaharmahali, Razieh
Rajabi, Armin
Babaei, Kazem
Kaseem, Mosab
author_facet Fattah-alhosseini, Arash
Chaharmahali, Razieh
Rajabi, Armin
Babaei, Kazem
Kaseem, Mosab
author_sort Fattah-alhosseini, Arash
collection PubMed
description Magnesium (Mg) alloys have recently attracted attention in biomedicine as biodegradable materials with non-toxic degradable products. Such compounds have become a frontier in the study of biodegradable materials because of their remarkable biomechanical compatibility and superior biocompatibility. The use of Mg-based implants reduces the negative consequences of permanent biological implants by eliminating the necessity for biomaterial surgery following the healing process. However, the quick deterioration, formation of considerable gas of hydrogen volumes and a rise in the body environment pH are obstacles in the application of Mg as an implant material. Hence, compelling advances for erosion resistance and biocompatibility of magnesium and its alloys are noteworthy. Surface modification may be a practical approach because it improves the erosion resistance compared with extensive preparation of a treated surface for progressed bone recovery and cell attachment. Coating produced by plasma electrolytic oxidation (PEO) seems a compelling method in order to enhance magnesium and the properties of its alloys. PEO-formed coatings cannot provide long-term protection in the physiological environment due to their porous nature. Thus, a polymer coating is applied on the porous PEO-formed coating, which is steadily applied on the surface. Polymer coatings improve the biocompatibility properties of Mg and its alloys and increase corrosion resistance. In this article, the most recent advancements in PEO/polymer composite coatings are reviewed, and the biocompatibility of such coatings is examined.
format Online
Article
Text
id pubmed-9781375
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97813752022-12-24 Performance of PEO/Polymer Coatings on the Biodegradability, Antibacterial Effect and Biocompatibility of Mg-Based Materials Fattah-alhosseini, Arash Chaharmahali, Razieh Rajabi, Armin Babaei, Kazem Kaseem, Mosab J Funct Biomater Review Magnesium (Mg) alloys have recently attracted attention in biomedicine as biodegradable materials with non-toxic degradable products. Such compounds have become a frontier in the study of biodegradable materials because of their remarkable biomechanical compatibility and superior biocompatibility. The use of Mg-based implants reduces the negative consequences of permanent biological implants by eliminating the necessity for biomaterial surgery following the healing process. However, the quick deterioration, formation of considerable gas of hydrogen volumes and a rise in the body environment pH are obstacles in the application of Mg as an implant material. Hence, compelling advances for erosion resistance and biocompatibility of magnesium and its alloys are noteworthy. Surface modification may be a practical approach because it improves the erosion resistance compared with extensive preparation of a treated surface for progressed bone recovery and cell attachment. Coating produced by plasma electrolytic oxidation (PEO) seems a compelling method in order to enhance magnesium and the properties of its alloys. PEO-formed coatings cannot provide long-term protection in the physiological environment due to their porous nature. Thus, a polymer coating is applied on the porous PEO-formed coating, which is steadily applied on the surface. Polymer coatings improve the biocompatibility properties of Mg and its alloys and increase corrosion resistance. In this article, the most recent advancements in PEO/polymer composite coatings are reviewed, and the biocompatibility of such coatings is examined. MDPI 2022-11-30 /pmc/articles/PMC9781375/ /pubmed/36547527 http://dx.doi.org/10.3390/jfb13040267 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Fattah-alhosseini, Arash
Chaharmahali, Razieh
Rajabi, Armin
Babaei, Kazem
Kaseem, Mosab
Performance of PEO/Polymer Coatings on the Biodegradability, Antibacterial Effect and Biocompatibility of Mg-Based Materials
title Performance of PEO/Polymer Coatings on the Biodegradability, Antibacterial Effect and Biocompatibility of Mg-Based Materials
title_full Performance of PEO/Polymer Coatings on the Biodegradability, Antibacterial Effect and Biocompatibility of Mg-Based Materials
title_fullStr Performance of PEO/Polymer Coatings on the Biodegradability, Antibacterial Effect and Biocompatibility of Mg-Based Materials
title_full_unstemmed Performance of PEO/Polymer Coatings on the Biodegradability, Antibacterial Effect and Biocompatibility of Mg-Based Materials
title_short Performance of PEO/Polymer Coatings on the Biodegradability, Antibacterial Effect and Biocompatibility of Mg-Based Materials
title_sort performance of peo/polymer coatings on the biodegradability, antibacterial effect and biocompatibility of mg-based materials
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781375/
https://www.ncbi.nlm.nih.gov/pubmed/36547527
http://dx.doi.org/10.3390/jfb13040267
work_keys_str_mv AT fattahalhosseiniarash performanceofpeopolymercoatingsonthebiodegradabilityantibacterialeffectandbiocompatibilityofmgbasedmaterials
AT chaharmahalirazieh performanceofpeopolymercoatingsonthebiodegradabilityantibacterialeffectandbiocompatibilityofmgbasedmaterials
AT rajabiarmin performanceofpeopolymercoatingsonthebiodegradabilityantibacterialeffectandbiocompatibilityofmgbasedmaterials
AT babaeikazem performanceofpeopolymercoatingsonthebiodegradabilityantibacterialeffectandbiocompatibilityofmgbasedmaterials
AT kaseemmosab performanceofpeopolymercoatingsonthebiodegradabilityantibacterialeffectandbiocompatibilityofmgbasedmaterials