Cargando…
Texture-Based Neural Network Model for Biometric Dental Applications
Background: The aim is to classify dentition using a novel texture-based automated convolutional neural network (CNN) for forensic and prosthetic applications. Methods: Natural human teeth (n = 600) were classified, cleaned, and inspected for exclusion criteria. The teeth were scanned with an intrao...
Autores principales: | Saleh, Omnia, Nozaki, Kosuke, Matsumura, Mayuko, Yanaka, Wataru, Miura, Hiroyuki, Fueki, Kenji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781388/ https://www.ncbi.nlm.nih.gov/pubmed/36556175 http://dx.doi.org/10.3390/jpm12121954 |
Ejemplares similares
-
Investigation of stress distribution within an endodontically treated tooth restored with different restorations
por: Huang, Ling, et al.
Publicado: (2022) -
Biometrics for network security
por: Reid, Paul
Publicado: (2004) -
Biometric applications in education
por: Hernandez-de-Menendez, Marcela, et al.
Publicado: (2021) -
Eggshell biometrics for individual egg identification based on convolutional neural networks
por: Chen, Zhonghao, et al.
Publicado: (2023) -
Modeling long-term human activeness using recurrent neural networks for biometric data
por: Kim, Zae Myung, et al.
Publicado: (2017)