Cargando…

USV-Observed Turbulent Heat Flux Induced by Late Spring Cold Dry Air Incursion over Sub-Mesoscale Warm Regions off Sanriku, Japan

We performed oceanic and atmospheric observations in the region off the Sanriku coast, Japan, from May 11 to 5 July 2022, using a wave-propelled unmanned surface vehicle, a Wave Glider (WG). Despite the severe weather conditions of atmospheric low-pressure system crossings, we successfully measured...

Descripción completa

Detalles Bibliográficos
Autores principales: Nagano, Akira, Hasegawa, Takuya, Ariyoshi, Keisuke, Iinuma, Takeshi, Fukuda, Tatsuya, Fujii, Nobuhiro, Tomita, Fumiaki, Hino, Ryota
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781413/
https://www.ncbi.nlm.nih.gov/pubmed/36560064
http://dx.doi.org/10.3390/s22249695
Descripción
Sumario:We performed oceanic and atmospheric observations in the region off the Sanriku coast, Japan, from May 11 to 5 July 2022, using a wave-propelled unmanned surface vehicle, a Wave Glider (WG). Despite the severe weather conditions of atmospheric low-pressure system crossings, we successfully measured wind, air temperature, humidity, and sea surface temperature over the course of 55 days to calculate the turbulent heat flux. The WG observed that the atmosphere became more humid due to the southerly wind along the northwestern rim of the North Pacific subtropical high. The warm Kuroshio water expanded to the southeast of Hokkaido as a result of the northward shedding of an anticyclonic mesoscale ([Formula: see text] km) eddy, called a warm-core ring, from the Kuroshio Extension. The WG traversed smaller (sub-mesoscale) water regions that were warmer and saltier than the surrounding Kuroshio water. The observations indicate that cold, dry air masses advected by northerly winds following the passage of atmospheric low-pressure systems generate a substantial upward turbulent heat flux over sub-mesoscale warm water regions, contrasting to no heat flux in the surrounding Kuroshio water region.