Cargando…

Joint Resource Management and Trajectory Optimization for UAV-Enabled Maritime Network

Due to the lack of places to employ communication infrastructures, there are many coverage blind zones in maritime communication networks. Benefiting from the high flexibility and maneuverability, unmanned aerial vehicles (UAVs) have been proposed as a promising method to provide broadband maritime...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Guanding, Ding, Xin, Liu, Shengli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781414/
https://www.ncbi.nlm.nih.gov/pubmed/36560131
http://dx.doi.org/10.3390/s22249763
Descripción
Sumario:Due to the lack of places to employ communication infrastructures, there are many coverage blind zones in maritime communication networks. Benefiting from the high flexibility and maneuverability, unmanned aerial vehicles (UAVs) have been proposed as a promising method to provide broadband maritime coverage for these blind zones. In this paper, a multi-UAV-enabled maritime communication model is proposed, where UAVs are deployed to provide the transmission service for maritime users. To improve the performance of the maritime communication systems, an optimization problem is formulated to maximize the minimum average throughput among all users by jointly optimizing the user association, power allocation, and UAV trajectory. To derive the solutions with a low computational complexity, we decompose this problem into three subproblems, namely user association optimization, power allocation optimization, and UAV trajectory optimization. Then, a joint iterative algorithm is developed to achieve the solutions based on the successive convex approximation and interior-point methods. Extensive simulation results validate the effectiveness of the proposed algorithm and demonstrate that UAVs can be used to enhance the maritime coverage.