Cargando…
Concrete Performance Produced Using Recycled Construction and By-Product Industrial Waste Coarse Aggregates
Concrete is classified as a multi-composite material comprising three phases: coarse aggregate, mortar, and interfacial transition zone (ITZ). Fine and coarse aggregates occupy approximately 70–85% by volume, of which coarse aggregate typically constitutes more than two-thirds of the total quantity...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781416/ https://www.ncbi.nlm.nih.gov/pubmed/36556791 http://dx.doi.org/10.3390/ma15248985 |
Sumario: | Concrete is classified as a multi-composite material comprising three phases: coarse aggregate, mortar, and interfacial transition zone (ITZ). Fine and coarse aggregates occupy approximately 70–85% by volume, of which coarse aggregate typically constitutes more than two-thirds of the total quantity of aggregate by volume. The current study investigates the concrete performance produced using various recycled construction and by-product industrial waste coarse aggregates. Six types of coarse aggregates: manufactured limestone, quartzite, natural scoria, by-product industrial waste aggregate, and two sources of recycled concrete aggregates with densities ranging from 860 to 2300 kg/m(3) and with different strength properties were studied. To determine the coarse aggregate contribution to the overall concrete performance, lean and rich concrete mixtures (Mix 1 and Mix 2) were used. Mix 1 (lean mixture) consisted of a ratio of water to cement (w/c) of 0.5 and cement content of 300 kg/m(3), whereas a higher quantity of cement of 500 kg/m(3) and a lower w/c ratio of 0.3 were used for Mix 2 (rich mixture). The results showed that while the compressive strength for different aggregate types in Mix 1 was comparable, the contribution of aggregate to concrete performance was very significant for Mix 2. Heavyweight aggregate produced the highest strength, while the lightweight and recycled aggregates resulted in lower mechanical properties compared to normal weight aggregates. The modulus of elasticity was also substantially affected by the coarse aggregate characteristics and even for Mix 1. The ACI 363R-92 and CSA A23.3-04 appeared to have the best model for predicting the modulus of elasticity, followed by the ACI-318-19 (density-based formula) and AS-3600-09. The density of coarse aggregate, and hence concrete, greatly influenced the mechanical properties of concrete. The water absorption percentage for the concrete produced from various types of aggregates was found to be higher for the aggregates of higher absorption capacity. |
---|