Cargando…

Analysis of the Impact of Invisible Road Icing on Selected Parameters of a Minibus Vehicle

The measurement of acceleration during vehicle motion can be used to assess the driving styles and behaviours of drivers, to control vehicle traffic, to detect uncontrolled vehicle behaviour, and to prevent accidents. The measurement of acceleration during vehicle motion on an icy road can be used t...

Descripción completa

Detalles Bibliográficos
Autores principales: Kurczyński, Dariusz, Zuska, Andrzej
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781571/
https://www.ncbi.nlm.nih.gov/pubmed/36560093
http://dx.doi.org/10.3390/s22249726
_version_ 1784857106915000320
author Kurczyński, Dariusz
Zuska, Andrzej
author_facet Kurczyński, Dariusz
Zuska, Andrzej
author_sort Kurczyński, Dariusz
collection PubMed
description The measurement of acceleration during vehicle motion can be used to assess the driving styles and behaviours of drivers, to control vehicle traffic, to detect uncontrolled vehicle behaviour, and to prevent accidents. The measurement of acceleration during vehicle motion on an icy road can be used to warn the driver about changing conditions and the related hazards. This paper presents the results of testing the motion parameters of a Ford Transit adapted for passenger transport in critical traffic conditions. It can contribute to the improvement of road safety. Critical traffic conditions are deemed in the paper as sudden braking, rapid acceleration, and circular vehicle motion at maximum speed maintainable in the given conditions. The vehicle’s acceleration and speed were measured during the tests. The tests were carried out with a TAA linear acceleration sensor and a Correvit S-350 Aqua optoelectronic sensor. The same test runs were conducted on a dry surface, a wet (after rain) surface and a surface covered with a thin, invisible ice layer. The objective of the tests was to determine the impact of invisible road icing, the so-called black ice, on the tested vehicle’s braking, acceleration, and circular motion. It was demonstrated that a virtually invisible ice layer covering the road surface has a substantial impact on the tested vehicle’s motion parameters, thereby affecting traffic safety. It substantially extends the braking and acceleration distances and requires the driver to reduce the vehicle’s speed when performing circular motions. A clear wet surface, representing motion after rain, did not substantially affect the analysed parameters. The obtained results can be used in traffic simulations and to analyse the causes of accidents.
format Online
Article
Text
id pubmed-9781571
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97815712022-12-24 Analysis of the Impact of Invisible Road Icing on Selected Parameters of a Minibus Vehicle Kurczyński, Dariusz Zuska, Andrzej Sensors (Basel) Article The measurement of acceleration during vehicle motion can be used to assess the driving styles and behaviours of drivers, to control vehicle traffic, to detect uncontrolled vehicle behaviour, and to prevent accidents. The measurement of acceleration during vehicle motion on an icy road can be used to warn the driver about changing conditions and the related hazards. This paper presents the results of testing the motion parameters of a Ford Transit adapted for passenger transport in critical traffic conditions. It can contribute to the improvement of road safety. Critical traffic conditions are deemed in the paper as sudden braking, rapid acceleration, and circular vehicle motion at maximum speed maintainable in the given conditions. The vehicle’s acceleration and speed were measured during the tests. The tests were carried out with a TAA linear acceleration sensor and a Correvit S-350 Aqua optoelectronic sensor. The same test runs were conducted on a dry surface, a wet (after rain) surface and a surface covered with a thin, invisible ice layer. The objective of the tests was to determine the impact of invisible road icing, the so-called black ice, on the tested vehicle’s braking, acceleration, and circular motion. It was demonstrated that a virtually invisible ice layer covering the road surface has a substantial impact on the tested vehicle’s motion parameters, thereby affecting traffic safety. It substantially extends the braking and acceleration distances and requires the driver to reduce the vehicle’s speed when performing circular motions. A clear wet surface, representing motion after rain, did not substantially affect the analysed parameters. The obtained results can be used in traffic simulations and to analyse the causes of accidents. MDPI 2022-12-12 /pmc/articles/PMC9781571/ /pubmed/36560093 http://dx.doi.org/10.3390/s22249726 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kurczyński, Dariusz
Zuska, Andrzej
Analysis of the Impact of Invisible Road Icing on Selected Parameters of a Minibus Vehicle
title Analysis of the Impact of Invisible Road Icing on Selected Parameters of a Minibus Vehicle
title_full Analysis of the Impact of Invisible Road Icing on Selected Parameters of a Minibus Vehicle
title_fullStr Analysis of the Impact of Invisible Road Icing on Selected Parameters of a Minibus Vehicle
title_full_unstemmed Analysis of the Impact of Invisible Road Icing on Selected Parameters of a Minibus Vehicle
title_short Analysis of the Impact of Invisible Road Icing on Selected Parameters of a Minibus Vehicle
title_sort analysis of the impact of invisible road icing on selected parameters of a minibus vehicle
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781571/
https://www.ncbi.nlm.nih.gov/pubmed/36560093
http://dx.doi.org/10.3390/s22249726
work_keys_str_mv AT kurczynskidariusz analysisoftheimpactofinvisibleroadicingonselectedparametersofaminibusvehicle
AT zuskaandrzej analysisoftheimpactofinvisibleroadicingonselectedparametersofaminibusvehicle