Cargando…
Clinical Application of Detecting COVID-19 Risks: A Natural Language Processing Approach
The clinical application of detecting COVID-19 factors is a challenging task. The existing named entity recognition models are usually trained on a limited set of named entities. Besides clinical, the non-clinical factors, such as social determinant of health (SDoH), are also important to study the...
Autores principales: | Bashir, Syed Raza, Raza, Shaina, Kocaman, Veysel, Qamar, Urooj |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781729/ https://www.ncbi.nlm.nih.gov/pubmed/36560764 http://dx.doi.org/10.3390/v14122761 |
Ejemplares similares
-
Entity and relation extraction from clinical case reports of COVID-19: a natural language processing approach
por: Raza, Shaina, et al.
Publicado: (2023) -
Constructing a disease database and using natural language processing to capture and standardize free text clinical information
por: Raza, Shaina, et al.
Publicado: (2023) -
Large-scale application of named entity recognition to biomedicine and epidemiology
por: Raza, Shaina, et al.
Publicado: (2022) -
Fake news detection based on news content and social contexts: a transformer-based approach
por: Raza, Shaina, et al.
Publicado: (2022) -
A COVID-19 Search Engine (CO-SE) with Transformer-based architecture
por: Raza, Shaina
Publicado: (2022)