Cargando…
Bovine Papillomavirus Type 1 or 2 Virion-Infected Primary Fibroblasts Constitute a Near-Natural Equine Sarcoid Model
Equine sarcoids are common, locally aggressive skin tumors induced by bovine papillomavirus types 1, 2, and possibly 13 (BPV1, BPV2, BPV13). Current in vitro models do not mimic de novo infection. We established primary fibroblasts from horse skin and succeeded in infecting these cells with native B...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781842/ https://www.ncbi.nlm.nih.gov/pubmed/36560661 http://dx.doi.org/10.3390/v14122658 |
Sumario: | Equine sarcoids are common, locally aggressive skin tumors induced by bovine papillomavirus types 1, 2, and possibly 13 (BPV1, BPV2, BPV13). Current in vitro models do not mimic de novo infection. We established primary fibroblasts from horse skin and succeeded in infecting these cells with native BPV1 and BPV2 virions. Subsequent cell characterization was carried out by cell culture, immunological, and molecular biological techniques. Infection of fibroblasts with serial 10-fold virion dilutions (2 × 10(6)-20 virions) uniformly led to DNA loads settling at around 150 copies/cell after four passages. Infected cells displayed typical features of equine sarcoid cells, including hyperproliferation, and loss of contact inhibition. Neither multiple passaging nor storage negatively affected cell hyperproliferation, viral DNA replication, and gene transcription, suggestive for infection-mediated cell immortalization. Intriguingly, extracellular vesicles released by BPV1-infected fibroblasts contained viral DNA that was most abundant in the fractions enriched for apoptotic bodies and exosomes. This viral DNA is likely taken up by non-infected fibroblasts. We conclude that equine primary fibroblasts stably infected with BPV1 and BPV2 virions constitute a valuable near-natural model for the study of yet unexplored mechanisms underlying the pathobiology of BPV1/2-induced sarcoids. |
---|