Cargando…
Investigating User Proficiency of Motor Imagery for EEG-Based BCI System to Control Simulated Wheelchair
The research on the electroencephalography (EEG)-based brain–computer interface (BCI) is widely utilized for wheelchair control. The ability of the user is one factor of BCI efficiency. Therefore, we focused on BCI tasks and protocols to yield high efficiency from the robust EEG features of individu...
Autores principales: | Saichoo, Theerat, Boonbrahm, Poonpong, Punsawad, Yunyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781917/ https://www.ncbi.nlm.nih.gov/pubmed/36560158 http://dx.doi.org/10.3390/s22249788 |
Ejemplares similares
-
Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users
por: Tibrewal, Navneet, et al.
Publicado: (2022) -
Predicting Motor Imagery BCI Performance Based on EEG Microstate Analysis
por: Cui, Yujie, et al.
Publicado: (2023) -
Task Transfer Learning for EEG Classification in Motor Imagery-Based BCI System
por: Zheng, Xuanci, et al.
Publicado: (2020) -
Human–machine interface-based wheelchair control using piezoelectric sensors based on face and tongue movements
por: Bouyam, Charoenporn, et al.
Publicado: (2022) -
The Impact of Different Visual Feedbacks in User Training on Motor Imagery Control in BCI
por: Zapała, Dariusz, et al.
Publicado: (2017)