Cargando…

Piracetam as a Therapeutic Agent for Doxorubicin-Induced Cognitive Deficits by Enhancing Cholinergic Functions and Reducing Neuronal Inflammation, Apoptosis, and Oxidative Stress in Rats

Cancer chemotherapy is known to cause cognitive defects in patients. Our study investigated the effect of piracetam (PIRA; 200 or 400 mg/kg) against doxorubicin (DOX)-induced cognitive deficits in a rat model. The cognitive parameters were analyzed using elevated plus-maze, novel object recognition,...

Descripción completa

Detalles Bibliográficos
Autores principales: Mani, Vasudevan, Rabbani, Syed Imam, Shariq, Ali, Amirthalingam, Palanisamy, Arfeen, Minhajul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781976/
https://www.ncbi.nlm.nih.gov/pubmed/36559014
http://dx.doi.org/10.3390/ph15121563
Descripción
Sumario:Cancer chemotherapy is known to cause cognitive defects in patients. Our study investigated the effect of piracetam (PIRA; 200 or 400 mg/kg) against doxorubicin (DOX)-induced cognitive deficits in a rat model. The cognitive parameters were analyzed using elevated plus-maze, novel object recognition, and Y-maze tests. Acetylcholinesterase (AChE), neuroinflammatory mediators (cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), nuclear factor-κB (NF-κB), tumor necrosis factor-alpha (TNF-α)), apoptotic proteins (B-cell lymphoma-2 (Bcl-2), Bcl2 associated X protein (Bax), cysteine aspartate specific protease-3 (caspase-3)), oxidative parameters (malondialdehyde (MDA), catalase (CAT), and glutathione (GSH)) were also determined in the brain. PIRA administration offered significant protection against DOX-induced cognitive deficits in all maze tests and restored cholinergic functions via a significant reduction in AChE levels. Additionally, PIRA suppressed DOX-induced neuroinflammatory mediators (COX-2, PGE2, NF-κB, and TNF-α), pro-apoptotic proteins (Bax and caspase-3), and oxidative stress (MDA). Besides, it facilitated antioxidant (CAT and GSH) levels. Hence, our study highlighted that the neuroprotective activity of PIRA against DOX-induced cognitive deficits can be linked to reductions of AChE levels, neuro-inflammatory mediators, pro-apoptotic proteins, and oxidative stress.