Cargando…
A Novel Methodology for Classifying EMG Movements Based on SVM and Genetic Algorithms
Electromyography (EMG) processing is a fundamental part of medical research. It offers the possibility of developing new devices and techniques for the diagnosis, treatment, care, and rehabilitation of patients, in most cases non-invasively. However, EMG signals are random, non-stationary, and non-l...
Autores principales: | Aviles, Marcos, Sánchez-Reyes, Luz-María, Fuentes-Aguilar, Rita Q., Toledo-Pérez, Diana C., Rodríguez-Reséndiz, Juvenal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9781991/ https://www.ncbi.nlm.nih.gov/pubmed/36557408 http://dx.doi.org/10.3390/mi13122108 |
Ejemplares similares
-
Artificial neural network EMG classifier for functional hand grasp
movements prediction
por: Gandolla, Marta, et al.
Publicado: (2016) -
The Impact of the Test Dissociation on the Binocular Balance of Children
por: Ibrahimi, Danjela, et al.
Publicado: (2023) -
SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier
por: Huang, Mei-Ling, et al.
Publicado: (2014) -
sEMG-Based Gesture Classifier for a Rehabilitation Glove
por: Copaci, Dorin, et al.
Publicado: (2022) -
Methodology Proposal of EMG Hand Movement Classification Based on Cross Recurrence Plots
por: Aceves-Fernandez, M. A., et al.
Publicado: (2019)