Cargando…
Study of Modeling and Optimal Take-Off Scheme for a Novel Tilt-Rotor UAV
The optimal trajectory planning for a novel tilt-rotor unmanned aerial vehicle (UAV) in different take-off schemes was studied. A novel tilt-rotor UAV that possesses characteristics of both tilt-rotors and a blended wing body is introduced. The aerodynamic modeling of the rotor based on blade elemen...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782007/ https://www.ncbi.nlm.nih.gov/pubmed/36560106 http://dx.doi.org/10.3390/s22249736 |
_version_ | 1784857221017894912 |
---|---|
author | Yu, Zelong Zhang, Jingjuan Wang, Xueyun |
author_facet | Yu, Zelong Zhang, Jingjuan Wang, Xueyun |
author_sort | Yu, Zelong |
collection | PubMed |
description | The optimal trajectory planning for a novel tilt-rotor unmanned aerial vehicle (UAV) in different take-off schemes was studied. A novel tilt-rotor UAV that possesses characteristics of both tilt-rotors and a blended wing body is introduced. The aerodynamic modeling of the rotor based on blade element momentum theory (BEMT) is established. An analytical method for determining the taking-off envelope of tilt angle versus airspeed is presented. A novel takeoff–tilting scheme, namely tilting take-off (TTO), is developed, and its optimal trajectory is designed based on the direct collocation method. Parameters such as the rotor thrust, tilt angle of rotor and angle of attack are chosen as control variables, and the forward velocity, vertical velocity and altitude are selected as state variables. The time and the energy consumption are considered in the performance optimization indexes. The optimal trajectories of the TTO scheme and other conventional schemes including vertical take-off (VTO) and short take-off (STO) are compared and analyzed. Simulation results indicate that the TTO scheme consumes 47 percent less time and 75 percent less energy than the VTO scheme. Moreover, with minor differences in time and energy consumption compared to the STO scheme, but without the need for sliding distance, TTO is the optimal take-off scheme to satisfy the flight constraints of a novel tilt-rotor UAV. |
format | Online Article Text |
id | pubmed-9782007 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97820072022-12-24 Study of Modeling and Optimal Take-Off Scheme for a Novel Tilt-Rotor UAV Yu, Zelong Zhang, Jingjuan Wang, Xueyun Sensors (Basel) Article The optimal trajectory planning for a novel tilt-rotor unmanned aerial vehicle (UAV) in different take-off schemes was studied. A novel tilt-rotor UAV that possesses characteristics of both tilt-rotors and a blended wing body is introduced. The aerodynamic modeling of the rotor based on blade element momentum theory (BEMT) is established. An analytical method for determining the taking-off envelope of tilt angle versus airspeed is presented. A novel takeoff–tilting scheme, namely tilting take-off (TTO), is developed, and its optimal trajectory is designed based on the direct collocation method. Parameters such as the rotor thrust, tilt angle of rotor and angle of attack are chosen as control variables, and the forward velocity, vertical velocity and altitude are selected as state variables. The time and the energy consumption are considered in the performance optimization indexes. The optimal trajectories of the TTO scheme and other conventional schemes including vertical take-off (VTO) and short take-off (STO) are compared and analyzed. Simulation results indicate that the TTO scheme consumes 47 percent less time and 75 percent less energy than the VTO scheme. Moreover, with minor differences in time and energy consumption compared to the STO scheme, but without the need for sliding distance, TTO is the optimal take-off scheme to satisfy the flight constraints of a novel tilt-rotor UAV. MDPI 2022-12-12 /pmc/articles/PMC9782007/ /pubmed/36560106 http://dx.doi.org/10.3390/s22249736 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yu, Zelong Zhang, Jingjuan Wang, Xueyun Study of Modeling and Optimal Take-Off Scheme for a Novel Tilt-Rotor UAV |
title | Study of Modeling and Optimal Take-Off Scheme for a Novel Tilt-Rotor UAV |
title_full | Study of Modeling and Optimal Take-Off Scheme for a Novel Tilt-Rotor UAV |
title_fullStr | Study of Modeling and Optimal Take-Off Scheme for a Novel Tilt-Rotor UAV |
title_full_unstemmed | Study of Modeling and Optimal Take-Off Scheme for a Novel Tilt-Rotor UAV |
title_short | Study of Modeling and Optimal Take-Off Scheme for a Novel Tilt-Rotor UAV |
title_sort | study of modeling and optimal take-off scheme for a novel tilt-rotor uav |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782007/ https://www.ncbi.nlm.nih.gov/pubmed/36560106 http://dx.doi.org/10.3390/s22249736 |
work_keys_str_mv | AT yuzelong studyofmodelingandoptimaltakeoffschemeforanoveltiltrotoruav AT zhangjingjuan studyofmodelingandoptimaltakeoffschemeforanoveltiltrotoruav AT wangxueyun studyofmodelingandoptimaltakeoffschemeforanoveltiltrotoruav |