Cargando…

Predominance of inhalation route in short-range transmission of respiratory viruses: Investigation based on computational fluid dynamics

During the Coronavirus disease 2019 pandemic, short-range virus transmission has been observed to have a higher risk of causing infection than long-range virus transmission. However, the roles played by the inhalation and large droplet routes cannot be distinguished in practice. A recent analytical...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Wenzhao, Liu, Li, Hang, Jian, Li, Yuguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Tsinghua University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782262/
https://www.ncbi.nlm.nih.gov/pubmed/36575690
http://dx.doi.org/10.1007/s12273-022-0968-y
Descripción
Sumario:During the Coronavirus disease 2019 pandemic, short-range virus transmission has been observed to have a higher risk of causing infection than long-range virus transmission. However, the roles played by the inhalation and large droplet routes cannot be distinguished in practice. A recent analytical study revealed the predominance of short-range inhalation over the large droplet spray route as causes of respiratory infections. In the current study, short-range exposure was analyzed via computational fluid dynamics (CFD) simulations using a discrete phase model. Detailed facial membranes, including eyes, nostrils, and a mouth, were considered. In CFD simulations, there is no need for a spherical approximation of the human head for estimating deposition nor the “anisokinetic aerosol sampling” approximation for estimating inhalation in the analytical model. We considered two scenarios (with two spheres [Scenario 1] and two human manikins [Scenario 2]), source-target distances of 0.2 to 2 m, and droplet diameters of 3 to 1,500 µm. The overall CFD exposure results agree well with data previously obtained from a simple analytical model. The CFD results confirm the predominance of the short-range inhalation route beyond 0.2 m for expiratory droplets smaller than 50 µm during talking and coughing. A critical droplet size of 87.5 µm was found to differentiate droplet behaviors. The number of droplets deposited on the target head exceeded those exposed to facial membranes, which implies a risk of exposure through the immediate surface route over a short range. ELECTRONIC SUPPLEMENTARY MATERIAL (ESM): the Supplementary Materials are available in the online version of this article at 10.1007/s12273-022-0968-y.