Cargando…
A Robust Computer-Aided Automated Brain Tumor Diagnosis Approach Using PSO-ReliefF Optimized Gaussian and Non-Linear Feature Space
Brain tumors are among the deadliest diseases in the modern world. This study proposes an optimized machine-learning approach for the detection and identification of the type of brain tumor (glioma, meningioma, or pituitary tumor) in brain images recorded using magnetic resonance imaging (MRI). The...
Autores principales: | Ali, Muhammad Umair, Kallu, Karam Dad, Masood, Haris, Hussain, Shaik Javeed, Ullah, Safee, Byun, Jong Hyuk, Zafar, Amad, Kim, Kawang Su |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782364/ https://www.ncbi.nlm.nih.gov/pubmed/36556401 http://dx.doi.org/10.3390/life12122036 |
Ejemplares similares
-
Robust Gaussian and Nonlinear Hybrid Invariant Clustered Features Aided Approach for Speeded Brain Tumor Diagnosis
por: Almalki, Yassir Edrees, et al.
Publicado: (2022) -
Kernel recursive least square tracker and long-short term memory ensemble based battery health prognostic model
por: Ali, Muhammad Umair, et al.
Publicado: (2021) -
An Isolated CNN Architecture for Classification of Finger-Tapping Tasks Using Initial Dip Images: A Functional Near-Infrared Spectroscopy Study
por: Ali, Muhammad Umair, et al.
Publicado: (2023) -
A Hybrid Data-Driven Approach for Multistep Ahead Prediction of State of Health and Remaining Useful Life of Lithium-Ion Batteries
por: Ali, Muhammad Umair, et al.
Publicado: (2022) -
OptEF-BCI: An Optimization-Based Hybrid EEG and fNIRS–Brain Computer Interface
por: Ali, Muhammad Umair, et al.
Publicado: (2023)