Cargando…

Clinical EEG of Rett Syndrome: Group Analysis Supplemented with Longitudinal Case Report

Rett syndrome (RTT), a severe neurodevelopmental disorder caused by MECP2 gene abnormalities, is characterized by atypical EEG activity, and its detailed examination is lacking. We combined the comparison of one-time eyes open EEG resting state activity from 32 girls with RTT and their 41 typically...

Descripción completa

Detalles Bibliográficos
Autores principales: Portnova, Galina, Neklyudova, Anastasia, Voinova, Victoria, Sysoeva, Olga
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782488/
https://www.ncbi.nlm.nih.gov/pubmed/36556193
http://dx.doi.org/10.3390/jpm12121973
Descripción
Sumario:Rett syndrome (RTT), a severe neurodevelopmental disorder caused by MECP2 gene abnormalities, is characterized by atypical EEG activity, and its detailed examination is lacking. We combined the comparison of one-time eyes open EEG resting state activity from 32 girls with RTT and their 41 typically developing peers (age 2–16 years old) with longitudinal following of one girl with RTT to reveal EEG parameters which correspond to the RTT progression. Traditional measures, such as epileptiform abnormalities, generalized background activity, beta activity and the sensorimotor rhythm, were supplemented by a new frequency rate index measured as the ratio between high- and low-frequency power of sensorimotor rhythm. Almost all studied EEG parameters differentiated the groups; however, only the elevated generalized background slowing and decrease in our newly introduced frequency rate index which reflects attenuation in the proportion of the upper band of sensorimotor rhythm in RTT showed significant relation with RTT progression both in longitudinal case and group analysis. Moreover, only this novel index was linked to the breathing irregularities RTT symptom. The percentage of epileptiform activity was unrelated to RTT severity, confirming previous studies. Thus, resting EEG can provide information about the pathophysiological changes caused by MECP2 abnormalities and disease progression.