Cargando…
XDecompo: Explainable Decomposition Approach in Convolutional Neural Networks for Tumour Image Classification
Of the various tumour types, colorectal cancer and brain tumours are still considered among the most serious and deadly diseases in the world. Therefore, many researchers are interested in improving the accuracy and reliability of diagnostic medical machine learning models. In computer-aided diagnos...
Autores principales: | Abbas, Asmaa, Gaber, Mohamed Medhat, Abdelsamea, Mohammed M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782528/ https://www.ncbi.nlm.nih.gov/pubmed/36560243 http://dx.doi.org/10.3390/s22249875 |
Ejemplares similares
-
Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network
por: Abbas, Asmaa, et al.
Publicado: (2020) -
3E-Net: Entropy-Based Elastic Ensemble of Deep Convolutional Neural Networks for Grading of Invasive Breast Carcinoma Histopathological Microscopic Images
por: Senousy, Zakaria, et al.
Publicado: (2021) -
Automated Classification of Malignant and Benign Breast Cancer
Lesions Using Neural Networks on Digitized Mammograms
por: Abdelsamea, Mohammed M, et al.
Publicado: (2019) -
The power of progressive active learning in floorplan images for energy assessment
por: Al-Turki, Dhoyazan, et al.
Publicado: (2023) -
On the Relationship between Variational Level Set-Based and SOM-Based Active Contours
por: Abdelsamea, Mohammed M., et al.
Publicado: (2015)