Cargando…
The Bovhyaluronidase Azoximer (Longidaza(®)) Disrupts Candida albicans and Candida albicans-Bacterial Mixed Biofilms and Increases the Efficacy of Antifungals
Background and Objectives: Candida albicans causes various diseases ranging from superficial mycoses to life-threatening systemic infections often associated with biofilm formation, including mixed fungal–bacterial consortia. The biofilm matrix protects cells, making Candida extremely resistant to t...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782602/ https://www.ncbi.nlm.nih.gov/pubmed/36556912 http://dx.doi.org/10.3390/medicina58121710 |
_version_ | 1784857382963118080 |
---|---|
author | Gatina, Alina Trizna, Elena Kolesnikova, Alena Baidamshina, Diana Gorshkova, Anna Drucker, Valentin Bogachev, Mikhail Kayumov, Airat |
author_facet | Gatina, Alina Trizna, Elena Kolesnikova, Alena Baidamshina, Diana Gorshkova, Anna Drucker, Valentin Bogachev, Mikhail Kayumov, Airat |
author_sort | Gatina, Alina |
collection | PubMed |
description | Background and Objectives: Candida albicans causes various diseases ranging from superficial mycoses to life-threatening systemic infections often associated with biofilm formation, including mixed fungal–bacterial consortia. The biofilm matrix protects cells, making Candida extremely resistant to treatment. Here, we show that the bovhyaluronidase azoximer (Longidaza(®)) in vitro destroys the biofilm formed by either C. albicans alone or mixed with bacteria, this way decreasing the concentrations of antimicrobials required for the pathogen’s eradication. Materials and Methods: Bovhyaluronidase azoximer, Longidaza® was obtained from NPO Petrovax Pharm Ltd., Moscow, Russia as lyophilized powder. The antifungal activity was assessed by microdilution assay and CFUs counting. Antibiofilm activity was evaluated via biofilms staining and scanning electron microscopy. Results: Thus, treatment with Longidaza(®) reduced the biofilm biomass of nine C. albicans clinical isolates by 30–60%, while mixed biofilms of C. albicans with various bacteria were destroyed by 30–40%. Furthermore, the concentration of fluconazole required to achieve a similar reduction of the residual respiratory activity of detached cell clumps of four C. albicans isolates has been reduced four-fold when combined with Longidaza(®). While in the biofilm, two of four isolates became significantly more susceptible to fluconazole in combination with Longidaza(®). Conclusion: Taken together, our data indicate that Longidaza(®) is capable of suppression of tissues and artificial surfaces biofouling by C. albicans biofilms, as well as facilitating drug penetration into the cell clumps, this way decreasing the effective MIC of antifungals. |
format | Online Article Text |
id | pubmed-9782602 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97826022022-12-24 The Bovhyaluronidase Azoximer (Longidaza(®)) Disrupts Candida albicans and Candida albicans-Bacterial Mixed Biofilms and Increases the Efficacy of Antifungals Gatina, Alina Trizna, Elena Kolesnikova, Alena Baidamshina, Diana Gorshkova, Anna Drucker, Valentin Bogachev, Mikhail Kayumov, Airat Medicina (Kaunas) Article Background and Objectives: Candida albicans causes various diseases ranging from superficial mycoses to life-threatening systemic infections often associated with biofilm formation, including mixed fungal–bacterial consortia. The biofilm matrix protects cells, making Candida extremely resistant to treatment. Here, we show that the bovhyaluronidase azoximer (Longidaza(®)) in vitro destroys the biofilm formed by either C. albicans alone or mixed with bacteria, this way decreasing the concentrations of antimicrobials required for the pathogen’s eradication. Materials and Methods: Bovhyaluronidase azoximer, Longidaza® was obtained from NPO Petrovax Pharm Ltd., Moscow, Russia as lyophilized powder. The antifungal activity was assessed by microdilution assay and CFUs counting. Antibiofilm activity was evaluated via biofilms staining and scanning electron microscopy. Results: Thus, treatment with Longidaza(®) reduced the biofilm biomass of nine C. albicans clinical isolates by 30–60%, while mixed biofilms of C. albicans with various bacteria were destroyed by 30–40%. Furthermore, the concentration of fluconazole required to achieve a similar reduction of the residual respiratory activity of detached cell clumps of four C. albicans isolates has been reduced four-fold when combined with Longidaza(®). While in the biofilm, two of four isolates became significantly more susceptible to fluconazole in combination with Longidaza(®). Conclusion: Taken together, our data indicate that Longidaza(®) is capable of suppression of tissues and artificial surfaces biofouling by C. albicans biofilms, as well as facilitating drug penetration into the cell clumps, this way decreasing the effective MIC of antifungals. MDPI 2022-11-23 /pmc/articles/PMC9782602/ /pubmed/36556912 http://dx.doi.org/10.3390/medicina58121710 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gatina, Alina Trizna, Elena Kolesnikova, Alena Baidamshina, Diana Gorshkova, Anna Drucker, Valentin Bogachev, Mikhail Kayumov, Airat The Bovhyaluronidase Azoximer (Longidaza(®)) Disrupts Candida albicans and Candida albicans-Bacterial Mixed Biofilms and Increases the Efficacy of Antifungals |
title | The Bovhyaluronidase Azoximer (Longidaza(®)) Disrupts Candida albicans and Candida albicans-Bacterial Mixed Biofilms and Increases the Efficacy of Antifungals |
title_full | The Bovhyaluronidase Azoximer (Longidaza(®)) Disrupts Candida albicans and Candida albicans-Bacterial Mixed Biofilms and Increases the Efficacy of Antifungals |
title_fullStr | The Bovhyaluronidase Azoximer (Longidaza(®)) Disrupts Candida albicans and Candida albicans-Bacterial Mixed Biofilms and Increases the Efficacy of Antifungals |
title_full_unstemmed | The Bovhyaluronidase Azoximer (Longidaza(®)) Disrupts Candida albicans and Candida albicans-Bacterial Mixed Biofilms and Increases the Efficacy of Antifungals |
title_short | The Bovhyaluronidase Azoximer (Longidaza(®)) Disrupts Candida albicans and Candida albicans-Bacterial Mixed Biofilms and Increases the Efficacy of Antifungals |
title_sort | bovhyaluronidase azoximer (longidaza(®)) disrupts candida albicans and candida albicans-bacterial mixed biofilms and increases the efficacy of antifungals |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782602/ https://www.ncbi.nlm.nih.gov/pubmed/36556912 http://dx.doi.org/10.3390/medicina58121710 |
work_keys_str_mv | AT gatinaalina thebovhyaluronidaseazoximerlongidazadisruptscandidaalbicansandcandidaalbicansbacterialmixedbiofilmsandincreasestheefficacyofantifungals AT triznaelena thebovhyaluronidaseazoximerlongidazadisruptscandidaalbicansandcandidaalbicansbacterialmixedbiofilmsandincreasestheefficacyofantifungals AT kolesnikovaalena thebovhyaluronidaseazoximerlongidazadisruptscandidaalbicansandcandidaalbicansbacterialmixedbiofilmsandincreasestheefficacyofantifungals AT baidamshinadiana thebovhyaluronidaseazoximerlongidazadisruptscandidaalbicansandcandidaalbicansbacterialmixedbiofilmsandincreasestheefficacyofantifungals AT gorshkovaanna thebovhyaluronidaseazoximerlongidazadisruptscandidaalbicansandcandidaalbicansbacterialmixedbiofilmsandincreasestheefficacyofantifungals AT druckervalentin thebovhyaluronidaseazoximerlongidazadisruptscandidaalbicansandcandidaalbicansbacterialmixedbiofilmsandincreasestheefficacyofantifungals AT bogachevmikhail thebovhyaluronidaseazoximerlongidazadisruptscandidaalbicansandcandidaalbicansbacterialmixedbiofilmsandincreasestheefficacyofantifungals AT kayumovairat thebovhyaluronidaseazoximerlongidazadisruptscandidaalbicansandcandidaalbicansbacterialmixedbiofilmsandincreasestheefficacyofantifungals AT gatinaalina bovhyaluronidaseazoximerlongidazadisruptscandidaalbicansandcandidaalbicansbacterialmixedbiofilmsandincreasestheefficacyofantifungals AT triznaelena bovhyaluronidaseazoximerlongidazadisruptscandidaalbicansandcandidaalbicansbacterialmixedbiofilmsandincreasestheefficacyofantifungals AT kolesnikovaalena bovhyaluronidaseazoximerlongidazadisruptscandidaalbicansandcandidaalbicansbacterialmixedbiofilmsandincreasestheefficacyofantifungals AT baidamshinadiana bovhyaluronidaseazoximerlongidazadisruptscandidaalbicansandcandidaalbicansbacterialmixedbiofilmsandincreasestheefficacyofantifungals AT gorshkovaanna bovhyaluronidaseazoximerlongidazadisruptscandidaalbicansandcandidaalbicansbacterialmixedbiofilmsandincreasestheefficacyofantifungals AT druckervalentin bovhyaluronidaseazoximerlongidazadisruptscandidaalbicansandcandidaalbicansbacterialmixedbiofilmsandincreasestheefficacyofantifungals AT bogachevmikhail bovhyaluronidaseazoximerlongidazadisruptscandidaalbicansandcandidaalbicansbacterialmixedbiofilmsandincreasestheefficacyofantifungals AT kayumovairat bovhyaluronidaseazoximerlongidazadisruptscandidaalbicansandcandidaalbicansbacterialmixedbiofilmsandincreasestheefficacyofantifungals |