Cargando…
Efficient WSN Node Placement by Coupling KNN Machine Learning for Signal Estimations and I-HBIA Metaheuristic Algorithm for Node Position Optimization
Wireless sensor network (WSN) deployment is an intensive field of research. In this paper, we propose a novel approach based on machine learning (ML) and metaheuristics (MH) for supporting decision-makers during the deployment process. We suggest optimizing node positions by introducing a new hybrid...
Autores principales: | Poggi, Bastien, Babatounde, Chabi, Vittori, Evelyne, Antoine-Santoni, Thierry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782644/ https://www.ncbi.nlm.nih.gov/pubmed/36560295 http://dx.doi.org/10.3390/s22249927 |
Ejemplares similares
-
Untraceable Mobile Node Authentication in WSN
por: Han, Kyusuk, et al.
Publicado: (2010) -
An Optimal WSN Node Coverage Based on Enhanced Archimedes Optimization Algorithm
por: Dao, Thi-Kien, et al.
Publicado: (2022) -
An Enhanced Flower Pollination Algorithm with Gaussian Perturbation for Node Location of a WSN
por: Zheng, Jun, et al.
Publicado: (2023) -
On Transient Queue-Size Distribution in a Model of WSN Node with Threshold-Type Power-Saving Algorithm
por: Kempa, Wojciech M., et al.
Publicado: (2022) -
Toward a Robust Multi-Objective Metaheuristic for Solving the Relay Node Placement Problem in Wireless Sensor Networks
por: Lanza-Gutiérrez, José M., et al.
Publicado: (2019)