Cargando…
Exploiting Domain Knowledge as Causal Independencies in Modeling Gestational Diabetes
We consider the problem of modeling gestational diabetes in a clinical study and develop a domain expert-guided probabilistic model that is both interpretable and explainable. Specifically, we construct a probabilistic model based on causal independence (Noisy-Or) from a carefully chosen set of feat...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782711/ https://www.ncbi.nlm.nih.gov/pubmed/36540991 |
_version_ | 1784857408061833216 |
---|---|
author | Mathur, Saurabh Karanam, Athresh Radivojac, Predrag Haas, David M. Kersting, Kristian Natarajan, Sriraam |
author_facet | Mathur, Saurabh Karanam, Athresh Radivojac, Predrag Haas, David M. Kersting, Kristian Natarajan, Sriraam |
author_sort | Mathur, Saurabh |
collection | PubMed |
description | We consider the problem of modeling gestational diabetes in a clinical study and develop a domain expert-guided probabilistic model that is both interpretable and explainable. Specifically, we construct a probabilistic model based on causal independence (Noisy-Or) from a carefully chosen set of features. We validate the efficacy of the model on the clinical study and demonstrate the importance of the features and the causal independence model. |
format | Online Article Text |
id | pubmed-9782711 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
record_format | MEDLINE/PubMed |
spelling | pubmed-97827112023-01-01 Exploiting Domain Knowledge as Causal Independencies in Modeling Gestational Diabetes Mathur, Saurabh Karanam, Athresh Radivojac, Predrag Haas, David M. Kersting, Kristian Natarajan, Sriraam Pac Symp Biocomput Article We consider the problem of modeling gestational diabetes in a clinical study and develop a domain expert-guided probabilistic model that is both interpretable and explainable. Specifically, we construct a probabilistic model based on causal independence (Noisy-Or) from a carefully chosen set of features. We validate the efficacy of the model on the clinical study and demonstrate the importance of the features and the causal independence model. 2023 /pmc/articles/PMC9782711/ /pubmed/36540991 Text en https://creativecommons.org/licenses/by-nc/4.0/Open Access chapter published by World Scientific Publishing Company and distributed under the terms of the Creative Commons Attribution Non-Commercial (CC BY-NC) 4.0 License. |
spellingShingle | Article Mathur, Saurabh Karanam, Athresh Radivojac, Predrag Haas, David M. Kersting, Kristian Natarajan, Sriraam Exploiting Domain Knowledge as Causal Independencies in Modeling Gestational Diabetes |
title | Exploiting Domain Knowledge as Causal Independencies in Modeling Gestational Diabetes |
title_full | Exploiting Domain Knowledge as Causal Independencies in Modeling Gestational Diabetes |
title_fullStr | Exploiting Domain Knowledge as Causal Independencies in Modeling Gestational Diabetes |
title_full_unstemmed | Exploiting Domain Knowledge as Causal Independencies in Modeling Gestational Diabetes |
title_short | Exploiting Domain Knowledge as Causal Independencies in Modeling Gestational Diabetes |
title_sort | exploiting domain knowledge as causal independencies in modeling gestational diabetes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782711/ https://www.ncbi.nlm.nih.gov/pubmed/36540991 |
work_keys_str_mv | AT mathursaurabh exploitingdomainknowledgeascausalindependenciesinmodelinggestationaldiabetes AT karanamathresh exploitingdomainknowledgeascausalindependenciesinmodelinggestationaldiabetes AT radivojacpredrag exploitingdomainknowledgeascausalindependenciesinmodelinggestationaldiabetes AT haasdavidm exploitingdomainknowledgeascausalindependenciesinmodelinggestationaldiabetes AT kerstingkristian exploitingdomainknowledgeascausalindependenciesinmodelinggestationaldiabetes AT natarajansriraam exploitingdomainknowledgeascausalindependenciesinmodelinggestationaldiabetes |