Cargando…
Exploiting Domain Knowledge as Causal Independencies in Modeling Gestational Diabetes
We consider the problem of modeling gestational diabetes in a clinical study and develop a domain expert-guided probabilistic model that is both interpretable and explainable. Specifically, we construct a probabilistic model based on causal independence (Noisy-Or) from a carefully chosen set of feat...
Autores principales: | Mathur, Saurabh, Karanam, Athresh, Radivojac, Predrag, Haas, David M., Kersting, Kristian, Natarajan, Sriraam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782711/ https://www.ncbi.nlm.nih.gov/pubmed/36540991 |
Ejemplares similares
-
Using Association Rules to Understand the Risk of Adverse Pregnancy Outcomes in a Diverse Population
por: Chu, Hoyin, et al.
Publicado: (2023) -
Active feature elicitation: An unified framework
por: Das, Srijita, et al.
Publicado: (2023) -
Association of Genetic Predisposition and Physical Activity With Risk of Gestational Diabetes in Nulliparous Women
por: Pagel, Kymberleigh A., et al.
Publicado: (2022) -
Editorial: Statistical Relational Artificial Intelligence
por: Riguzzi, Fabrizio, et al.
Publicado: (2019) -
Causal Learning From Predictive Modeling for Observational Data
por: Ramanan, Nandini, et al.
Publicado: (2020)