Cargando…
An Approach to Identifying and Quantifying Bias in Biomedical Data
Data biases are a known impediment to the development of trustworthy machine learning models and their application to many biomedical problems. When biased data is suspected, the assumption that the labeled data is representative of the population must be relaxed and methods that exploit a typically...
Autores principales: | De Paolis Kaluza, M. Clara, Jain, Shantanu, Radivojac, Predrag |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782737/ https://www.ncbi.nlm.nih.gov/pubmed/36540987 |
Ejemplares similares
-
Estimating classification accuracy in positive-unlabeled learning: characterization and correction strategies
por: Ramola, Rashika, et al.
Publicado: (2019) -
Learning from the unknown: exploring the range of bacterial functionality
por: Mahlich, Yannick, et al.
Publicado: (2023) -
Enumerating consistent sub-graphs of directed acyclic graphs: an insight into biomedical ontologies
por: Peng, Yisu, et al.
Publicado: (2018) -
Using Association Rules to Understand the Risk of Adverse Pregnancy Outcomes in a Diverse Population
por: Chu, Hoyin, et al.
Publicado: (2023) -
Multi-objective prioritization of genes for high-throughput functional assays towards improved clinical variant classification
por: Chen, Yile, et al.
Publicado: (2023)