Cargando…
Explainable Artificial Intelligence Model for Stroke Prediction Using EEG Signal
State-of-the-art healthcare technologies are incorporating advanced Artificial Intelligence (AI) models, allowing for rapid and easy disease diagnosis. However, most AI models are considered “black boxes,” because there is no explanation for the decisions made by these models. Users may find it chal...
Autores principales: | Islam, Mohammed Saidul, Hussain, Iqram, Rahman, Md Mezbaur, Park, Se Jin, Hossain, Md Azam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782764/ https://www.ncbi.nlm.nih.gov/pubmed/36560227 http://dx.doi.org/10.3390/s22249859 |
Ejemplares similares
-
An Explainable EEG-Based Human Activity Recognition Model Using Machine-Learning Approach and LIME
por: Hussain, Iqram, et al.
Publicado: (2023) -
Quantitative Evaluation of EEG-Biomarkers for Prediction of Sleep Stages
por: Hussain, Iqram, et al.
Publicado: (2022) -
Prediction of Myoelectric Biomarkers in Post-Stroke Gait
por: Hussain, Iqram, et al.
Publicado: (2021) -
Quantitative Evaluation of Task-Induced Neurological Outcome after Stroke
por: Hussain, Iqram, et al.
Publicado: (2021) -
Heart disease prediction using distinct artificial intelligence techniques: performance analysis and comparison
por: Hossain, Md. Imam, et al.
Publicado: (2023)