Cargando…

Atomic-Level Structure of Zinc-Modified Cementitious Calcium Silicate Hydrate

[Image: see text] It has recently been demonstrated that the addition of zinc can enhance the mechanical strength of tricalcium silicates (C(3)S) upon hydration, but the structure of the main hydration product of cement, calcium silicate hydrate (C-S-H), in zinc-modified formulations remains unresol...

Descripción completa

Detalles Bibliográficos
Autores principales: Morales-Melgares, Anna, Casar, Ziga, Moutzouri, Pinelopi, Venkatesh, Amrit, Cordova, Manuel, Kunhi Mohamed, Aslam, Scrivener, Karen L., Bowen, Paul, Emsley, Lyndon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782795/
https://www.ncbi.nlm.nih.gov/pubmed/36508687
http://dx.doi.org/10.1021/jacs.2c06749
Descripción
Sumario:[Image: see text] It has recently been demonstrated that the addition of zinc can enhance the mechanical strength of tricalcium silicates (C(3)S) upon hydration, but the structure of the main hydration product of cement, calcium silicate hydrate (C-S-H), in zinc-modified formulations remains unresolved. Here, we combine (29)Si DNP-enhanced solid-state nuclear magnetic resonance (NMR), density functional theory (DFT)-based chemical shift computations, and molecular dynamics (MD) modeling to determine the atomic-level structure of zinc-modified C-S-H. The structure contains two main new silicon species (Q((1,Zn)) and Q((2p,Zn))) where zinc substitutes Q((1)) silicon species in dimers and bridging Q((2b)) silicon sites, respectively. Structures determined as a function of zinc content show that zinc promotes an increase in the dreierketten mean chain lengths.