Cargando…
Pathological Diagnosis of Adult Craniopharyngioma on MR Images: An Automated End-to-End Approach Based on Deep Neural Networks Requiring No Manual Segmentation
Purpose: The goal of this study was to develop end-to-end convolutional neural network (CNN) models that can noninvasively discriminate papillary craniopharyngioma (PCP) from adamantinomatous craniopharyngioma (ACP) on MR images requiring no manual segmentation. Materials and methods: A total of 97...
Autores principales: | Teng, Yuen, Ran, Xiaoping, Chen, Boran, Chen, Chaoyue, Xu, Jianguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782822/ https://www.ncbi.nlm.nih.gov/pubmed/36556097 http://dx.doi.org/10.3390/jcm11247481 |
Ejemplares similares
-
Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
por: Chen, Chaoyue, et al.
Publicado: (2022) -
Differentiation between Germinoma and Craniopharyngioma Using Radiomics-Based Machine Learning
por: Chen, Boran, et al.
Publicado: (2022) -
Radiomic Analysis of Craniopharyngioma and Meningioma in the Sellar/Parasellar Area with MR Images Features and Texture Features: A Feasible Study
por: Tian, Zerong, et al.
Publicado: (2020) -
MR‐linac daily semi‐automated end‐to‐end quality control verification
por: Malkov, Victor N., et al.
Publicado: (2023) -
An End-to-End Recurrent Neural Network for Radial MR Image Reconstruction
por: Oh, Changheun, et al.
Publicado: (2022)