Cargando…
EmbedFormer: Embedded Depth-Wise Convolution Layer for Token Mixing
Visual Transformers (ViTs) have shown impressive performance due to their powerful coding ability to catch spatial and channel information. MetaFormer gives us a general architecture of transformers consisting of a token mixer and a channel mixer through which we can generally understand how transfo...
Autores principales: | Wang, Zeji, He, Xiaowei, Li, Yi, Chuai, Qinliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782848/ https://www.ncbi.nlm.nih.gov/pubmed/36560222 http://dx.doi.org/10.3390/s22249854 |
Ejemplares similares
-
To Embed or Not: Network Embedding as a Paradigm in Computational Biology
por: Nelson, Walter, et al.
Publicado: (2019) -
EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction
por: Jin, Yuan, et al.
Publicado: (2021) -
Bayesian Depth-Wise Convolutional Neural Network Design for Brain Tumor MRI Classification
por: Ekong, Favour, et al.
Publicado: (2022) -
The Tokens
por: Reid, Greg
Publicado: (2019) -
Architectural Distortion-Based Digital Mammograms Classification Using Depth Wise Convolutional Neural Network
por: Rehman, Khalil ur, et al.
Publicado: (2021)