Cargando…
Facile and scalable synthesis of un-doped, doped and co-doped graphene quantum dots: a comparative study on their impact for environmental applications
In recent years, graphene quantum dots (GQDs) received huge attention due to their unique properties and potential applicability in different area. Here, we report simple and facile method for the synthesis of GQDs and their functionalization by doping and co-doping using different heteroatom under...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782860/ https://www.ncbi.nlm.nih.gov/pubmed/36605643 http://dx.doi.org/10.1039/d2ra05275j |
_version_ | 1784857439264309248 |
---|---|
author | Suryawanshi, Reena Kurrey, Ramsingh Sahu, Sushama Ghosh, Kallol K. |
author_facet | Suryawanshi, Reena Kurrey, Ramsingh Sahu, Sushama Ghosh, Kallol K. |
author_sort | Suryawanshi, Reena |
collection | PubMed |
description | In recent years, graphene quantum dots (GQDs) received huge attention due to their unique properties and potential applicability in different area. Here, we report simple and facile method for the synthesis of GQDs and their functionalization by doping and co-doping using different heteroatom under the optimized conditions. The doping and co-doping of GQDs using boron and nitrogen have been confirmed by FTIR and TEM. The UV-visible and fluorescence techniques have been used to study the optical properties and stability of functionalized GQDs. Further, the screening for enhancement of quantum yields of all GQDs were performed with fluorescence and UV-visible spectra under the optimized conditions. The average QY was obtained as 16.0%, 83.6%, 18.2% and 29.6% for GQDs, B-GQDs, N-GQDs and B,N-GQDs, respectively. The sensor was used to determine paraoxon in water samples. The LOD was observed to be 1.0 × 10(−4) M with linearity range of 0.001 to 0.1 M. The RSD was calculated for the developed B,N-GQDs based sensor and observed to be 2.99% with the regression coefficient as 0.997. All the doped, co-doped and un-doped GQDs possess remarkable properties as a fluorescent probe. |
format | Online Article Text |
id | pubmed-9782860 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-97828602023-01-04 Facile and scalable synthesis of un-doped, doped and co-doped graphene quantum dots: a comparative study on their impact for environmental applications Suryawanshi, Reena Kurrey, Ramsingh Sahu, Sushama Ghosh, Kallol K. RSC Adv Chemistry In recent years, graphene quantum dots (GQDs) received huge attention due to their unique properties and potential applicability in different area. Here, we report simple and facile method for the synthesis of GQDs and their functionalization by doping and co-doping using different heteroatom under the optimized conditions. The doping and co-doping of GQDs using boron and nitrogen have been confirmed by FTIR and TEM. The UV-visible and fluorescence techniques have been used to study the optical properties and stability of functionalized GQDs. Further, the screening for enhancement of quantum yields of all GQDs were performed with fluorescence and UV-visible spectra under the optimized conditions. The average QY was obtained as 16.0%, 83.6%, 18.2% and 29.6% for GQDs, B-GQDs, N-GQDs and B,N-GQDs, respectively. The sensor was used to determine paraoxon in water samples. The LOD was observed to be 1.0 × 10(−4) M with linearity range of 0.001 to 0.1 M. The RSD was calculated for the developed B,N-GQDs based sensor and observed to be 2.99% with the regression coefficient as 0.997. All the doped, co-doped and un-doped GQDs possess remarkable properties as a fluorescent probe. The Royal Society of Chemistry 2022-12-23 /pmc/articles/PMC9782860/ /pubmed/36605643 http://dx.doi.org/10.1039/d2ra05275j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Suryawanshi, Reena Kurrey, Ramsingh Sahu, Sushama Ghosh, Kallol K. Facile and scalable synthesis of un-doped, doped and co-doped graphene quantum dots: a comparative study on their impact for environmental applications |
title | Facile and scalable synthesis of un-doped, doped and co-doped graphene quantum dots: a comparative study on their impact for environmental applications |
title_full | Facile and scalable synthesis of un-doped, doped and co-doped graphene quantum dots: a comparative study on their impact for environmental applications |
title_fullStr | Facile and scalable synthesis of un-doped, doped and co-doped graphene quantum dots: a comparative study on their impact for environmental applications |
title_full_unstemmed | Facile and scalable synthesis of un-doped, doped and co-doped graphene quantum dots: a comparative study on their impact for environmental applications |
title_short | Facile and scalable synthesis of un-doped, doped and co-doped graphene quantum dots: a comparative study on their impact for environmental applications |
title_sort | facile and scalable synthesis of un-doped, doped and co-doped graphene quantum dots: a comparative study on their impact for environmental applications |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782860/ https://www.ncbi.nlm.nih.gov/pubmed/36605643 http://dx.doi.org/10.1039/d2ra05275j |
work_keys_str_mv | AT suryawanshireena facileandscalablesynthesisofundopeddopedandcodopedgraphenequantumdotsacomparativestudyontheirimpactforenvironmentalapplications AT kurreyramsingh facileandscalablesynthesisofundopeddopedandcodopedgraphenequantumdotsacomparativestudyontheirimpactforenvironmentalapplications AT sahusushama facileandscalablesynthesisofundopeddopedandcodopedgraphenequantumdotsacomparativestudyontheirimpactforenvironmentalapplications AT ghoshkallolk facileandscalablesynthesisofundopeddopedandcodopedgraphenequantumdotsacomparativestudyontheirimpactforenvironmentalapplications |