Cargando…

Interactive Lane Keeping System for Autonomous Vehicles Using LSTM-RNN Considering Driving Environments

This paper presents an interactive lane keeping model for an advanced driver assistant system and autonomous vehicle. The proposed model considers not only the lane markers but also the interaction with surrounding vehicles in determining steering inputs. The proposed algorithm is designed based on...

Descripción completa

Detalles Bibliográficos
Autor principal: Jeong, Yonghwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782904/
https://www.ncbi.nlm.nih.gov/pubmed/36560257
http://dx.doi.org/10.3390/s22249889
Descripción
Sumario:This paper presents an interactive lane keeping model for an advanced driver assistant system and autonomous vehicle. The proposed model considers not only the lane markers but also the interaction with surrounding vehicles in determining steering inputs. The proposed algorithm is designed based on the Recurrent Neural Network (RNN) with long short-term memory cells, which are configured by the collected driving data. A data collection vehicle is equipped with a front camera, LiDAR, and DGPS. The input features of the RNN consist of lane information, surrounding targets, and ego vehicle states. The output feature is the steering wheel angle to keep the lane. The proposed algorithm is evaluated through similarity analysis and a case study with driving data. The proposed algorithm shows accurate results compared to the conventional algorithm, which only considers the lane markers. In addition, the proposed algorithm effectively responds to the surrounding targets by considering the interaction with the ego vehicle.