Cargando…
A human-in-the-loop based Bayesian network approach to improve imbalanced radiation outcomes prediction for hepatocellular cancer patients with stereotactic body radiotherapy
BACKGROUND: Imbalanced outcome is one of common characteristics of oncology datasets. Current machine learning approaches have limitation in learning from such datasets. Here, we propose to resolve this problem by utilizing a human-in-the-loop (HITL) approach, which we hypothesize will also lead to...
Autores principales: | Luo, Yi, Cuneo, Kyle C., Lawrence, Theodore S., Matuszak, Martha M., Dawson, Laura A., Niraula, Dipesh, Ten Haken, Randall K., El Naqa, Issam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9782976/ https://www.ncbi.nlm.nih.gov/pubmed/36568208 http://dx.doi.org/10.3389/fonc.2022.1061024 |
Ejemplares similares
-
Quantum deep reinforcement learning for clinical decision support in oncology: application to adaptive radiotherapy
por: Niraula, Dipesh, et al.
Publicado: (2021) -
Author Correction: Quantum deep reinforcement learning for clinical decision support in oncology: application to adaptive radiotherapy
por: Niraula, Dipesh, et al.
Publicado: (2023) -
A clinical decision support system for AI-assisted decision-making in response-adaptive radiotherapy (ARCliDS)
por: Niraula, Dipesh, et al.
Publicado: (2023) -
Current status and future developments in predicting outcomes in radiation oncology
por: Niraula, Dipesh, et al.
Publicado: (2022) -
The Role of Machine Learning in Knowledge-Based Response-Adapted Radiotherapy
por: Tseng, Huan-Hsin, et al.
Publicado: (2018)