Cargando…
Crossroads in Liver Transplantation: Is Artificial Intelligence the Key to Donor–Recipient Matching?
Liver transplantation outcomes have improved in recent years. However, with the emergence of expanded donor criteria, tools to better assist donor–recipient matching have become necessary. Most of the currently proposed scores based on conventional biostatistics are not good classifiers of a problem...
Autores principales: | Calleja Lozano, Rafael, Hervás Martínez, César, Briceño Delgado, Francisco Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783019/ https://www.ncbi.nlm.nih.gov/pubmed/36556945 http://dx.doi.org/10.3390/medicina58121743 |
Ejemplares similares
-
Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation
por: Guijo-Rubio, David, et al.
Publicado: (2021) -
New models for donor-recipient matching in lung transplantations
por: Dueñas-Jurado, J. M., et al.
Publicado: (2021) -
The Neurologist and Artificial Intelligence: Titans at Crossroads
por: Vishnu, Venugopalan Y., et al.
Publicado: (2019) -
Matching Donor and Recipient Size in Pediatric Heart Transplantation
por: Singh, Tajinder P., et al.
Publicado: (2022) -
The Influence of Donor to Recipient Size Matching on Kidney Transplant Outcomes
por: Arshad, Adam, et al.
Publicado: (2018)