Cargando…

Study of High-Temperature-Induced Morphological and Physiological Changes in Potato Using Nondestructive Plant Phenotyping

Potato (Solanum tuberosum L.) is vulnerable to high temperatures, which are expected to increase in frequency and duration due to climate change. Nondestructive phenotyping techniques represent a promising technology for helping the adaptation of agriculture to climate change. In this study, three p...

Descripción completa

Detalles Bibliográficos
Autores principales: Lazarević, Boris, Carović-Stanko, Klaudija, Safner, Toni, Poljak, Milan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783218/
https://www.ncbi.nlm.nih.gov/pubmed/36559644
http://dx.doi.org/10.3390/plants11243534
Descripción
Sumario:Potato (Solanum tuberosum L.) is vulnerable to high temperatures, which are expected to increase in frequency and duration due to climate change. Nondestructive phenotyping techniques represent a promising technology for helping the adaptation of agriculture to climate change. In this study, three potato cultivars (Agria, Bellarosa and Desiree) were grown under four temperature treatments: 20/15 °C (T1), 25/20 °C (T2), 30/25 °C (T3), and 35/30 °C (T4). Multispectral and chlorophyll fluorescence imaging, 3D multispectral scanning, and gas exchange analysis were used to study the effect of moderate heat stress on potato morphology and physiology and select phenotypic traits most responsive to increased temperatures. The most responsive morphological traits to increased temperatures are related to decreased leaf area, which were detected already at T2. Increased temperatures (already T2) also changed leaf spectral characteristics, indicated by increased red, green, and blue reflectance and decreased far-red reflectance and anthocyanin index (ARI). Regarding chlorophyll fluorescence, increasing temperatures (T2) caused an increase in minimal fluorescence of both dark-adapted (F(0)) and light-adapted (F(0)’) plants. Stomatal conductance, transpiration rate, photosynthetic rate, instantaneous water use efficiency (WUE), and intrinsic water use efficiency increased from T1 to T3 and decreased again in T4. Using recursive partitioning analysis, the most responsive potato phenotypic traits to increased temperature were leaf area projected (LAP), ARI, F(0), and WUE. These traits could be considered marker traits for further studying potato responses to increased temperatures.