Cargando…

Flavacol and Its Novel Derivative 3-β-Hydroxy Flavacol from Streptomyces sp. Pv 4-95 after the Expression of Heterologous AdpA

Actinomycetes are one of the main producers of biologically active compounds. However, their capabilities have not been fully evaluated due to the presence of many unexpressed silent clusters; moreover, actinomycetes can probably produce new or previously discovered natural products under certain co...

Descripción completa

Detalles Bibliográficos
Autores principales: Tistechok, Stepan, Stierhof, Marc, Kachor, Anna, Myronovskyi, Maksym, Gromyko, Oleksandr, Luzhetskyy, Andriy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783318/
https://www.ncbi.nlm.nih.gov/pubmed/36557588
http://dx.doi.org/10.3390/microorganisms10122335
Descripción
Sumario:Actinomycetes are one of the main producers of biologically active compounds. However, their capabilities have not been fully evaluated due to the presence of many unexpressed silent clusters; moreover, actinomycetes can probably produce new or previously discovered natural products under certain conditions. Overexpressing the adpA gene into streptomycetes strains can unlock silent biosynthetic gene clusters. Herein, we showed that by applying this approach to Streptomyces sp. Pv 4-95 isolated from Phyllostachys viridiglaucescens rhizosphere soil, two new mass peaks were identified. NMR structure analysis identified these compounds as flavacol and a new 3-β-hydroxy flavacol derivative. We suggest that the presence of heterologous AdpA has no direct effect on the synthesis of flavacol and its derivatives in the Pv 4-95 strain. However, AdpA affects the synthesis of precursors by increasing their quantity, which then condenses into the resulting compounds.