Cargando…
Chemical Structures, Properties, and Applications of Selected Crude Oil-Based and Bio-Based Polymers
The growing perspective of running out of crude oil followed by increasing prices for all crude oil-based materials, e.g., crude oil-based polymers, which have a huge number of practical applications but are usually neither biodegradable nor environmentally friendly, has resulted in searching for th...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783367/ https://www.ncbi.nlm.nih.gov/pubmed/36559918 http://dx.doi.org/10.3390/polym14245551 |
Sumario: | The growing perspective of running out of crude oil followed by increasing prices for all crude oil-based materials, e.g., crude oil-based polymers, which have a huge number of practical applications but are usually neither biodegradable nor environmentally friendly, has resulted in searching for their substitutes—namely, bio-based polymers. Currently, both these types of polymers are used in practice worldwide. Owing to the advantages and disadvantages occurring among plastics with different origin, in this current review data on selected popular crude oil-based and bio-based polymers has been collected in order to compare their practical applications resulting from their composition, chemical structure, and related physical and chemical properties. The main goal is to compare polymers in pairs, which have the same or similar practical applications, regardless of different origin and composition. It has been proven that many crude oil-based polymers can be effectively replaced by bio-based polymers without significant loss of properties that ensure practical applications. Additionally, biopolymers have higher potential than crude oil-based polymers in many modern applications. It is concluded that the future of polymers will belong to bio-based rather than crude oil-based polymers. |
---|