Cargando…
Medical Image Classification Based on Semi-Supervised Generative Adversarial Network and Pseudo-Labelling
Deep learning has substantially improved the state-of-the-art in object detection and image classification. Deep learning usually requires large-scale labelled datasets to train the models; however, due to the restrictions in medical data sharing and accessibility and the expensive labelling cost, t...
Autores principales: | Liu, Kun, Ning, Xiaolin, Liu, Sidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783368/ https://www.ncbi.nlm.nih.gov/pubmed/36560335 http://dx.doi.org/10.3390/s22249967 |
Ejemplares similares
-
Quantum semi-supervised generative adversarial network for enhanced data classification
por: Nakaji, Kouhei, et al.
Publicado: (2021) -
GSDA: Generative adversarial network-based semi-supervised data augmentation for ultrasound image classification
por: Liu, Zhaoshan, et al.
Publicado: (2023) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
A Semi-Supervised Stacked Autoencoder Using the Pseudo Label for Classification Tasks
por: Lai, Jie, et al.
Publicado: (2023) -
Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition
por: Gao, Fei, et al.
Publicado: (2018)