Cargando…

The new insight into the inflammatory response following focused ultrasound-mediated blood–brain barrier disruption

BACKGROUND: Despite the great potential of FUS-BBB disruption (FUS-BBBD), it is still controversial whether FUS-BBBD acts as an inducing factor of neuro-inflammation or not, and the biological responses after FUS-BBBD triggers the inflammatory process are poorly understood. The aim of this study is...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Hyo Jin, Han, Mun, Seo, Hyeon, Park, Chan Yuk, Lee, Eun-Hee, Park, Juyoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783406/
https://www.ncbi.nlm.nih.gov/pubmed/36564820
http://dx.doi.org/10.1186/s12987-022-00402-3
Descripción
Sumario:BACKGROUND: Despite the great potential of FUS-BBB disruption (FUS-BBBD), it is still controversial whether FUS-BBBD acts as an inducing factor of neuro-inflammation or not, and the biological responses after FUS-BBBD triggers the inflammatory process are poorly understood. The aim of this study is to investigate the safety window for FUS levels based on a comprehensive safety assessment. METHODS: The mice were treated with two different ultrasound parameters (0.25 MPa and 0.42 MPa) in the thalamus region of brain. The efficacy of BBB opening was verified by dynamic contrast-enhanced MRI (DCE-MRI) and the cavitation monitoring. The transcriptome analysis was performed to investigate the molecular response for the two BBBD conditions after FUS-mediated BBB opening in time-dependent manners. Histological analysis was used for evaluation of the tissue damage, neuronal degeneration, and activation of glial cells induced by FUS-BBBD. RESULTS: The BBBD, as quantified by the K(trans), was approximately threefold higher in 0.42 MPa-treated group than 0.25 MPa-treated group. While the minimal tissue/cellular damage was found in 0.25 MPa-treated group, visible damages containing microhemorrhages and degenerating neurons were detected in 0.42 MPa-treated group in accordance with the extent of BBBD. In transcriptome analysis, 0.42 MPa-treated group exhibited highly dynamic changes in the expression levels of an inflammatory response or NF-κB pathway-relative genes in a time-dependent manner whereas, 0.25 MPa was not altered. Interestingly, although it is clear that 0.42 MPa induces neuroinflammation through glial activation, neuroprotective properties were evident by the expression of A2-type astrocytes. CONCLUSIONS: Our findings propose that a well-defined BBBD parameter of 0.25 MPa could ensure the safety without cellular/tissue damage or sterile inflammatory response in the brain. Furthermore, the fact that the excessive sonication parameters at 0.42 MPa could induce a sterile inflammation response via glial activation suggested the possibility that could lead to tissue repair toward the homeostasis of the brain microenvironment through A2-type reactive astrocytes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12987-022-00402-3.