Cargando…
Wearable Intelligent Machine Learning Rehabilitation Assessment for Stroke Patients Compared with Clinician Assessment
In order to solve the shortcomings of the current clinical scale assessment for stroke patients, such as excessive time consumption, strong subjectivity, and coarse grading, this study designed an intelligent rehabilitation assessment system based on wearable devices and a machine learning algorithm...
Autores principales: | Guo, Liquan, Zhang, Bochao, Wang, Jiping, Wu, Qunqiang, Li, Xinming, Zhou, Linfu, Xiong, Daxi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783419/ https://www.ncbi.nlm.nih.gov/pubmed/36556083 http://dx.doi.org/10.3390/jcm11247467 |
Ejemplares similares
-
Clinical Study of a Wearable Remote Rehabilitation Training System for Patients With Stroke: Randomized Controlled Pilot Trial
por: Guo, Liquan, et al.
Publicado: (2023) -
A Compressed Sensing-Based Wearable Sensor Network for Quantitative Assessment of Stroke Patients
por: Yu, Lei, et al.
Publicado: (2016) -
Machine learning in chronic obstructive pulmonary disease
por: Zhang, Bochao, et al.
Publicado: (2023) -
Quantitative Evaluation System of Wrist Motor Function for Stroke Patients Based on Force Feedback
por: Ding, Kangjia, et al.
Publicado: (2022) -
Quantitative Evaluation System of Upper Limb Motor Function of Stroke Patients Based on Desktop Rehabilitation Robot
por: Zhang, Mingliang, et al.
Publicado: (2022)