Cargando…
An Improved Method Based on Bluetooth Low-Energy Fingerprinting for the Implementation of PEPS System
In the automotive field, the introduction of keyless access systems is revolutionizing car entry techniques currently dominated by a physical key. In this context, this paper investigates the possible use of smartphones to create a PEPS (Passive Entry Passive Start) system using the BLE (Bluetooth L...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783498/ https://www.ncbi.nlm.nih.gov/pubmed/36559982 http://dx.doi.org/10.3390/s22249615 |
_version_ | 1784857591388569600 |
---|---|
author | Bonavolontà, Francesco Liccardo, Annalisa Schiano Lo Moriello, Rosario Caputo, Enzo de Alteriis, Giorgio Palladino, Angelo Vitolo, Giuseppe |
author_facet | Bonavolontà, Francesco Liccardo, Annalisa Schiano Lo Moriello, Rosario Caputo, Enzo de Alteriis, Giorgio Palladino, Angelo Vitolo, Giuseppe |
author_sort | Bonavolontà, Francesco |
collection | PubMed |
description | In the automotive field, the introduction of keyless access systems is revolutionizing car entry techniques currently dominated by a physical key. In this context, this paper investigates the possible use of smartphones to create a PEPS (Passive Entry Passive Start) system using the BLE (Bluetooth Low-Energy) Fingerprinting technique that allows, along with a connection to a low-cost BLE micro-controllers network, determining the driver’s position, either inside or outside the vehicle. Several issues have been taken into account to assure the reliability of the proposal; in particular, (i) spatial orientation of each microcontroller-based BLE node which ensures the best performance at 180° and 90° referred to as the BLE scanner and the advertiser, respectively; (ii) data filtering techniques based on Kalman Filter; and (iii) definition of new network topology, resulting from the merger of two standard network topologies. Particular attention has been paid to the selection of the appropriate measurement method capable of assuring the most reliable positioning results by means of the adoption of only six embedded BLE devices. This way, the global accuracy of the system reaches 98.5%, while minimum and maximum accuracy values relative to the individual zones equal, respectively, to 97.3% and 99.4% have been observed, thus confirming the capability of the proposed method of recognizing whether the driver is inside or outside the vehicle. |
format | Online Article Text |
id | pubmed-9783498 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-97834982022-12-24 An Improved Method Based on Bluetooth Low-Energy Fingerprinting for the Implementation of PEPS System Bonavolontà, Francesco Liccardo, Annalisa Schiano Lo Moriello, Rosario Caputo, Enzo de Alteriis, Giorgio Palladino, Angelo Vitolo, Giuseppe Sensors (Basel) Article In the automotive field, the introduction of keyless access systems is revolutionizing car entry techniques currently dominated by a physical key. In this context, this paper investigates the possible use of smartphones to create a PEPS (Passive Entry Passive Start) system using the BLE (Bluetooth Low-Energy) Fingerprinting technique that allows, along with a connection to a low-cost BLE micro-controllers network, determining the driver’s position, either inside or outside the vehicle. Several issues have been taken into account to assure the reliability of the proposal; in particular, (i) spatial orientation of each microcontroller-based BLE node which ensures the best performance at 180° and 90° referred to as the BLE scanner and the advertiser, respectively; (ii) data filtering techniques based on Kalman Filter; and (iii) definition of new network topology, resulting from the merger of two standard network topologies. Particular attention has been paid to the selection of the appropriate measurement method capable of assuring the most reliable positioning results by means of the adoption of only six embedded BLE devices. This way, the global accuracy of the system reaches 98.5%, while minimum and maximum accuracy values relative to the individual zones equal, respectively, to 97.3% and 99.4% have been observed, thus confirming the capability of the proposed method of recognizing whether the driver is inside or outside the vehicle. MDPI 2022-12-08 /pmc/articles/PMC9783498/ /pubmed/36559982 http://dx.doi.org/10.3390/s22249615 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bonavolontà, Francesco Liccardo, Annalisa Schiano Lo Moriello, Rosario Caputo, Enzo de Alteriis, Giorgio Palladino, Angelo Vitolo, Giuseppe An Improved Method Based on Bluetooth Low-Energy Fingerprinting for the Implementation of PEPS System |
title | An Improved Method Based on Bluetooth Low-Energy Fingerprinting for the Implementation of PEPS System |
title_full | An Improved Method Based on Bluetooth Low-Energy Fingerprinting for the Implementation of PEPS System |
title_fullStr | An Improved Method Based on Bluetooth Low-Energy Fingerprinting for the Implementation of PEPS System |
title_full_unstemmed | An Improved Method Based on Bluetooth Low-Energy Fingerprinting for the Implementation of PEPS System |
title_short | An Improved Method Based on Bluetooth Low-Energy Fingerprinting for the Implementation of PEPS System |
title_sort | improved method based on bluetooth low-energy fingerprinting for the implementation of peps system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783498/ https://www.ncbi.nlm.nih.gov/pubmed/36559982 http://dx.doi.org/10.3390/s22249615 |
work_keys_str_mv | AT bonavolontafrancesco animprovedmethodbasedonbluetoothlowenergyfingerprintingfortheimplementationofpepssystem AT liccardoannalisa animprovedmethodbasedonbluetoothlowenergyfingerprintingfortheimplementationofpepssystem AT schianolomoriellorosario animprovedmethodbasedonbluetoothlowenergyfingerprintingfortheimplementationofpepssystem AT caputoenzo animprovedmethodbasedonbluetoothlowenergyfingerprintingfortheimplementationofpepssystem AT dealteriisgiorgio animprovedmethodbasedonbluetoothlowenergyfingerprintingfortheimplementationofpepssystem AT palladinoangelo animprovedmethodbasedonbluetoothlowenergyfingerprintingfortheimplementationofpepssystem AT vitologiuseppe animprovedmethodbasedonbluetoothlowenergyfingerprintingfortheimplementationofpepssystem AT bonavolontafrancesco improvedmethodbasedonbluetoothlowenergyfingerprintingfortheimplementationofpepssystem AT liccardoannalisa improvedmethodbasedonbluetoothlowenergyfingerprintingfortheimplementationofpepssystem AT schianolomoriellorosario improvedmethodbasedonbluetoothlowenergyfingerprintingfortheimplementationofpepssystem AT caputoenzo improvedmethodbasedonbluetoothlowenergyfingerprintingfortheimplementationofpepssystem AT dealteriisgiorgio improvedmethodbasedonbluetoothlowenergyfingerprintingfortheimplementationofpepssystem AT palladinoangelo improvedmethodbasedonbluetoothlowenergyfingerprintingfortheimplementationofpepssystem AT vitologiuseppe improvedmethodbasedonbluetoothlowenergyfingerprintingfortheimplementationofpepssystem |