Cargando…
Pest-YOLO: A model for large-scale multi-class dense and tiny pest detection and counting
Frequent outbreaks of agricultural pests can reduce crop production severely and restrict agricultural production. Therefore, automatic monitoring and precise recognition of crop pests have a high practical value in the process of agricultural planting. In recent years, pest recognition and detectio...
Autores principales: | Wen, Changji, Chen, Hongrui, Ma, Zhenyu, Zhang, Tian, Yang, Ce, Su, Hengqiang, Chen, Hongbing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783619/ https://www.ncbi.nlm.nih.gov/pubmed/36570910 http://dx.doi.org/10.3389/fpls.2022.973985 |
Ejemplares similares
-
Wheat Spike Detection and Counting in the Field Based on SpikeRetinaNet
por: Wen, Changji, et al.
Publicado: (2022) -
AgriPest-YOLO: A rapid light-trap agricultural pest detection method based on deep learning
por: Zhang, Wei, et al.
Publicado: (2022) -
Yolo-Pest: An Insect Pest Object Detection Algorithm via CAC3 Module
por: Xiang, Qiuchi, et al.
Publicado: (2023) -
Tomato Diseases and Pests Detection Based on Improved Yolo V3 Convolutional Neural Network
por: Liu, Jun, et al.
Publicado: (2020) -
Crop pest image classification based on improved densely connected convolutional network
por: Peng, Hongxing, et al.
Publicado: (2023)