Cargando…
Oxidative Stress-Induced Silver Nano-Carriers for Chemotherapy
Recently, silver nanoparticles (AgNPs) have been extensively explored in a variety of biological applications, especially cancer treatment. AgNPs have been demonstrated to exhibit anti-tumor effects through cell apoptosis. This study intends to promote cell apoptosis further by increasing oxidative...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783686/ https://www.ncbi.nlm.nih.gov/pubmed/36558899 http://dx.doi.org/10.3390/ph15121449 |
Sumario: | Recently, silver nanoparticles (AgNPs) have been extensively explored in a variety of biological applications, especially cancer treatment. AgNPs have been demonstrated to exhibit anti-tumor effects through cell apoptosis. This study intends to promote cell apoptosis further by increasing oxidative stress. AgNPs are encapsulated by biocompatible and biodegradable polyaspartamide (PA) (PA-AgNPs) that carries the anti-cancer drug Doxorubicin (Dox) to inhibit cancer cells primarily. PA-AgNPs have an average hydrodynamic diameter of 130 nm, allowing them to move flexibly within the body. PA-AgNPs show an excellent targeting capacity to cancer cells when they are conjugated to biotin. In addition, they release Dox efficiently by up to 88% in cancer environments. The DCFDA experiment demonstrates that the Dox-carried PA-AgNPs generate reactive oxidation species intensively beside 4T1 cells. The MTT experiment confirms that PA-AgNPs with Dox may strongly inhibit 4T1 cancer cells. Furthermore, the in vivo study confirms that PA-AgNPs with Dox successfully inhibit tumors, which are about four times smaller than the control group and have high biosafety that can be applied for chemotherapy. |
---|