Cargando…
Improving Network Training on Resource-Constrained Devices via Habituation Normalization †
As a technique for accelerating and stabilizing training, the batch normalization (BN) is widely used in deep learning. However, BN cannot effectively estimate the mean and the variance of samples when training/fine-tuning with small batches of data on resource-constrained devices. It will lead to a...
Autores principales: | Lai, Huixia, Zhang, Lulu, Zhang, Shi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783687/ https://www.ncbi.nlm.nih.gov/pubmed/36560310 http://dx.doi.org/10.3390/s22249940 |
Ejemplares similares
-
LiteNet: Lightweight Neural Network for Detecting Arrhythmias at Resource-Constrained Mobile Devices
por: He, Ziyang, et al.
Publicado: (2018) -
Secure Communications for Resource-Constrained IoT Devices †
por: Taha, Abd-Elhamid M., et al.
Publicado: (2020) -
Privacy and Security for Resource-Constrained IoT Devices and Networks: Research Challenges and Opportunities
por: Li, Shancang, et al.
Publicado: (2019) -
Towards Network Lifetime Enhancement of Resource Constrained IoT Devices in Heterogeneous Wireless Sensor Networks
por: din, Muhammad Salah ud, et al.
Publicado: (2020) -
Seismic Waveform Inversion Capability on Resource-Constrained Edge Devices
por: Manu, Daniel, et al.
Publicado: (2022)