Cargando…
A Review of Machine Learning for Near-Infrared Spectroscopy
The analysis of infrared spectroscopy of substances is a non-invasive measurement technique that can be used in analytics. Although the main objective of this study is to provide a review of machine learning (ML) algorithms that have been reported for analyzing near-infrared (NIR) spectroscopy from...
Autores principales: | Zhang, Wenwen, Kasun, Liyanaarachchi Chamara, Wang, Qi Jie, Zheng, Yuanjin, Lin, Zhiping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784128/ https://www.ncbi.nlm.nih.gov/pubmed/36560133 http://dx.doi.org/10.3390/s22249764 |
Ejemplares similares
-
Near-Infrared Spectroscopy
and Machine Learning for
Accurate Dating of Historical Books
por: Coppola, Floriana, et al.
Publicado: (2023) -
Application of Near-Infrared Spectroscopy and Hyperspectral Imaging Combined with Machine Learning Algorithms for Quality Inspection of Grape: A Review
por: Ye, Weixin, et al.
Publicado: (2022) -
Diagnosis of Chronic Musculoskeletal Pain by Using Functional Near-Infrared Spectroscopy and Machine Learning
por: Zeng, Xinglin, et al.
Publicado: (2023) -
Machine Learning Classification of Articular Cartilage Integrity Using Near Infrared Spectroscopy
por: Afara, Isaac O., et al.
Publicado: (2020) -
Objective measurement of tinnitus using functional near-infrared spectroscopy and machine learning
por: Shoushtarian, Mehrnaz, et al.
Publicado: (2020)