Cargando…

Combinational Regularity Analysis (CORA) — a new method for uncovering complex causation in medical and health research

BACKGROUND: Modern configurational comparative methods (CCMs) of causal inference, such as Qualitative Comparative Analysis (QCA) and Coincidence Analysis (CNA), have started to make inroads into medical and health research over the last decade. At the same time, these methods remain unable to proce...

Descripción completa

Detalles Bibliográficos
Autores principales: Thiem, Alrik, Mkrtchyan, Lusine, Sebechlebská, Zuzana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784266/
https://www.ncbi.nlm.nih.gov/pubmed/36564706
http://dx.doi.org/10.1186/s12874-022-01800-9
Descripción
Sumario:BACKGROUND: Modern configurational comparative methods (CCMs) of causal inference, such as Qualitative Comparative Analysis (QCA) and Coincidence Analysis (CNA), have started to make inroads into medical and health research over the last decade. At the same time, these methods remain unable to process data on multi-morbidity, a situation in which at least two chronic conditions are simultaneously present. Such data require the capability to analyze complex effects. Against a background of fast-growing numbers of patients with multi-morbid diagnoses, we present a new member of the family of CCMs with which multiple conditions and their complex conjunctions can be analyzed: Combinational Regularity Analysis (CORA). METHODS: The technical heart of CORA consists of algorithms that have originally been developed in electrical engineering for the analysis of multi-output switching circuits. We have adapted these algorithms for purposes of configurational data analysis. To demonstrate CORA, we provide several example applications, both with simulated and empirical data, by means of the eponymous software package CORA. Also included in CORA is the possibility to mine configurational data and to visualize results via logic diagrams. RESULTS: For simple single-condition analyses, CORA’s solution is identical with that of QCA or CNA. However, analyses of multiple conditions with CORA differ in important respects from analyses with QCA or CNA. Most importantly, CORA is presently the only configurational method able to simultaneously explain individual conditions as well as complex conjunctions of conditions. CONCLUSIONS: Through CORA, problems of multi-morbidity in particular, and configurational analyses of complex effects in general, come into the analytical reach of CCMs. Future research aims to further broaden and enhance CORA’s capabilities for refining such analyses. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12874-022-01800-9.