Cargando…

Statistical Characterization of Strain-Controlled Low-Cycle Fatigue Behavior of Structural Steels and Aluminium Material

Probabilistic evaluation of the resistance to low-cycle deformation and failure of the critical components in the equipment used in the energy, engineering, metallurgy, chemical, shipbuilding, and other industries is of primary importance with the view towards their secure operation, in particular,...

Descripción completa

Detalles Bibliográficos
Autores principales: Bazaras, Žilvinas, Lukoševičius, Vaidas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784356/
https://www.ncbi.nlm.nih.gov/pubmed/36556614
http://dx.doi.org/10.3390/ma15248808
_version_ 1784857791535513600
author Bazaras, Žilvinas
Lukoševičius, Vaidas
author_facet Bazaras, Žilvinas
Lukoševičius, Vaidas
author_sort Bazaras, Žilvinas
collection PubMed
description Probabilistic evaluation of the resistance to low-cycle deformation and failure of the critical components in the equipment used in the energy, engineering, metallurgy, chemical, shipbuilding, and other industries is of primary importance with the view towards their secure operation, in particular, given the high level of cyclic loading acting on the equipment during its operation. Until recently, systematic probabilistic evaluation has been generally applied to the results of statistical and fatigue investigations. Very few investigations applying this approach to the low-cycle domain. The present study aims to substantiate the use of probabilistic calculation in the low-cycle domain by systematic probabilistic evaluation of the diagrams of cyclic elastoplastic deformation and durability of the materials representing the major types of cyclic properties (hardening, softening, stabilization) and investigation of the correlation relationships between mechanical properties and cyclic deformation and failure parameters. The experimental methodology that includes the calculated design of the probabilistic fatigue curves is also developed and the curves are compared to the results of the experiment. Probabilistic values of mechanical characteristics were determined and calculated low-cycle fatigue curves corresponding to different failure probabilities, to assess them from the probabilistic perspective. A comparison of low-cycle fatigue curves has shown that the durability curves generated for some materials using analytical expressions are not accurate. According to the analysis of the relative values of experimental probabilities of low-cycle fatigue curves, the use of analytical expressions to build the curves can lead to a significant error. The results obtained allow for the revision of the load bearing capacity and life of the structural elements subjected to cyclic elastoplastic loading in view of the potential scattering of mechanical properties and resistance parameters to low-cycle deformation and failure. In addition, the results enable determination of the scatter tolerances, depending on the criticality of the part or structure.
format Online
Article
Text
id pubmed-9784356
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97843562022-12-24 Statistical Characterization of Strain-Controlled Low-Cycle Fatigue Behavior of Structural Steels and Aluminium Material Bazaras, Žilvinas Lukoševičius, Vaidas Materials (Basel) Article Probabilistic evaluation of the resistance to low-cycle deformation and failure of the critical components in the equipment used in the energy, engineering, metallurgy, chemical, shipbuilding, and other industries is of primary importance with the view towards their secure operation, in particular, given the high level of cyclic loading acting on the equipment during its operation. Until recently, systematic probabilistic evaluation has been generally applied to the results of statistical and fatigue investigations. Very few investigations applying this approach to the low-cycle domain. The present study aims to substantiate the use of probabilistic calculation in the low-cycle domain by systematic probabilistic evaluation of the diagrams of cyclic elastoplastic deformation and durability of the materials representing the major types of cyclic properties (hardening, softening, stabilization) and investigation of the correlation relationships between mechanical properties and cyclic deformation and failure parameters. The experimental methodology that includes the calculated design of the probabilistic fatigue curves is also developed and the curves are compared to the results of the experiment. Probabilistic values of mechanical characteristics were determined and calculated low-cycle fatigue curves corresponding to different failure probabilities, to assess them from the probabilistic perspective. A comparison of low-cycle fatigue curves has shown that the durability curves generated for some materials using analytical expressions are not accurate. According to the analysis of the relative values of experimental probabilities of low-cycle fatigue curves, the use of analytical expressions to build the curves can lead to a significant error. The results obtained allow for the revision of the load bearing capacity and life of the structural elements subjected to cyclic elastoplastic loading in view of the potential scattering of mechanical properties and resistance parameters to low-cycle deformation and failure. In addition, the results enable determination of the scatter tolerances, depending on the criticality of the part or structure. MDPI 2022-12-09 /pmc/articles/PMC9784356/ /pubmed/36556614 http://dx.doi.org/10.3390/ma15248808 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bazaras, Žilvinas
Lukoševičius, Vaidas
Statistical Characterization of Strain-Controlled Low-Cycle Fatigue Behavior of Structural Steels and Aluminium Material
title Statistical Characterization of Strain-Controlled Low-Cycle Fatigue Behavior of Structural Steels and Aluminium Material
title_full Statistical Characterization of Strain-Controlled Low-Cycle Fatigue Behavior of Structural Steels and Aluminium Material
title_fullStr Statistical Characterization of Strain-Controlled Low-Cycle Fatigue Behavior of Structural Steels and Aluminium Material
title_full_unstemmed Statistical Characterization of Strain-Controlled Low-Cycle Fatigue Behavior of Structural Steels and Aluminium Material
title_short Statistical Characterization of Strain-Controlled Low-Cycle Fatigue Behavior of Structural Steels and Aluminium Material
title_sort statistical characterization of strain-controlled low-cycle fatigue behavior of structural steels and aluminium material
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784356/
https://www.ncbi.nlm.nih.gov/pubmed/36556614
http://dx.doi.org/10.3390/ma15248808
work_keys_str_mv AT bazaraszilvinas statisticalcharacterizationofstraincontrolledlowcyclefatiguebehaviorofstructuralsteelsandaluminiummaterial
AT lukoseviciusvaidas statisticalcharacterizationofstraincontrolledlowcyclefatiguebehaviorofstructuralsteelsandaluminiummaterial