Cargando…

A Simulation Study of Tolerance of Breathing Amplitude Variations in Radiotherapy of Lung Cancer Using 4DCT and Time-Resolved 4DMRI

As patient breathing irregularities can introduce a large uncertainty in targeting the internal tumor volume (ITV) of lung cancer patients, and thereby affect treatment quality, this study evaluates dose tolerance of tumor motion amplitude variations in ITV-based volumetric modulated arc therapy (VM...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Guang, Sehovic, Admir, Xu, Lee, Shukla, Pawas, Zhang, Lei, Zhou, Ying, Wang, Ping, Wu, Abraham, Rimner, Andreas, Zhang, Pengpeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784418/
https://www.ncbi.nlm.nih.gov/pubmed/36556006
http://dx.doi.org/10.3390/jcm11247390
Descripción
Sumario:As patient breathing irregularities can introduce a large uncertainty in targeting the internal tumor volume (ITV) of lung cancer patients, and thereby affect treatment quality, this study evaluates dose tolerance of tumor motion amplitude variations in ITV-based volumetric modulated arc therapy (VMAT). A motion-incorporated planning technique was employed to simulate treatment delivery of 10 lung cancer patients’ clinical VMAT plans using original and three scaling-up (by 0.5, 1.0, and 2.0 cm) motion waveforms from single-breath four-dimensional computed tomography (4DCT) and multi-breath time-resolved 4D magnetic resonance imaging (TR-4DMRI). The planning tumor volume (PTV = ITV + 5 mm margin) dose coverage (PTV D95%) was evaluated. The repeated waveforms were used to move the isocenter in sync with the clinical leaf motion and gantry rotation. The continuous VMAT arcs were broken down into many static beam fields at the control points (2°-interval) and the composite plan represented the motion-incorporated VMAT plan. Eight motion-incorporated plans per patient were simulated and the plan with the native 4DCT waveform was used as a control. The first (D95% ≤ 95%) and second (D95% ≤ 90%) plan breaching points due to motion amplitude increase were identified and analyzed. The PTV D95% in the motion-incorporated plans was 99.4 ± 1.0% using 4DCT, closely agreeing with the corresponding ITV-based VMAT plan (PTV D95% = 100%). Tumor motion irregularities were observed in TR-4DMRI and triggered D95% ≤ 95% in one case. For small tumors, 4 mm extra motion triggered D95% ≤ 95%, and 6–8 mm triggered D95% ≤ 90%. For large tumors, 14 mm and 21 mm extra motions triggered the first and second breaching points, respectively. This study has demonstrated that PTV D95% breaching points may occur for small tumors during treatment delivery. Clinically, it is important to monitor and avoid systematic motion increase, including baseline drift, and large random motion spikes through threshold-based beam gating.