Cargando…

Facile Access to Gleditsia microphylla Galactomannan Hydrogel with Rapid Self-Repair Capacity and Multicyclic Water-Retaining Performance of Sandy Soil

Sandy soil has poor water-holding performance, making it difficult for plants to survive, which worsens the deterioration of the ecological environment. Therefore, borax cross-linked Gleditsia microphylla galactomannan hydrogel (GMGH) was prepared, and its practicability as a water-retaining agent w...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Chuanjie, Tang, Meng, Zhang, Fenglun, Lei, Fuhou, Li, Pengfei, Wang, Kun, Zeng, Hongbo, Jiang, Jianxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784420/
https://www.ncbi.nlm.nih.gov/pubmed/36559797
http://dx.doi.org/10.3390/polym14245430
Descripción
Sumario:Sandy soil has poor water-holding performance, making it difficult for plants to survive, which worsens the deterioration of the ecological environment. Therefore, borax cross-linked Gleditsia microphylla galactomannan hydrogel (GMGH) was prepared, and its practicability as a water-retaining agent was analyzed. GMGH exhibited fast self-healing performance (150 s, ≈100%) and a high swelling index (88.70 g/g in pH 9). The feasibility of improving the water absorption and retention properties of sandy soil was explored by mixing different proportions (0.1, 0.3, 0.5 wt % sandy soil) of GMGH and sandy soil. The results showed that sandy soil had a more porous structure after adding 0.5 wt % GMGH, and its water absorption index increased from 15.68 to 38.12%. In an artificial climate box, the water-holding time of the sandy soil was extended from 3 to 23.5 days, and the cycles of water absorption and retention were more than 10 times. Therefore, GMGH has broad application prospects as a potential water-retaining agent for desertification control.