Cargando…

Feature-Based Characterisation of Turned Surface Topography with Suppression of High-Frequency Measurement Errors

Errors that occur when surface topography is measured and analysed can be classified depending on the type of surface studied. Many types of surface topographies are considered when frequency-based errors are studied. However, turned surface topography is not comprehensively studied when data proces...

Descripción completa

Detalles Bibliográficos
Autor principal: Podulka, Przemysław
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784540/
https://www.ncbi.nlm.nih.gov/pubmed/36559990
http://dx.doi.org/10.3390/s22249622
_version_ 1784857836493209600
author Podulka, Przemysław
author_facet Podulka, Przemysław
author_sort Podulka, Przemysław
collection PubMed
description Errors that occur when surface topography is measured and analysed can be classified depending on the type of surface studied. Many types of surface topographies are considered when frequency-based errors are studied. However, turned surface topography is not comprehensively studied when data processing errors caused by false estimation (definition and suppression) of selected surface features (form or noise) are analysed. In the present work, the effects of the application of various methods (regular Gaussian regression, robust Gaussian regression, and spline and fast Fourier Transform filters) for the suppression of high-frequency measurement noise from the raw measured data of turned surface topography are presented and compared. The influence and usage of commonly used available commercial software, e.g., autocorrelation function, power spectral density, and texture direction, which function on the values of areal surface topography parameters from selected (ISO 25178) standards, are also introduced. Analysed surfaces were measured with a stylus or via non-contact (optical–white light interferometry) methods. It was found that the characterisation of surface topography, based on the analysis of selected features, can be crucial in reducing measurement and data analysis errors when various filters are applied. Moreover, the application of common functions can be advantageous when feature-based studies are proposed for both profile and areal data processing.
format Online
Article
Text
id pubmed-9784540
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-97845402022-12-24 Feature-Based Characterisation of Turned Surface Topography with Suppression of High-Frequency Measurement Errors Podulka, Przemysław Sensors (Basel) Article Errors that occur when surface topography is measured and analysed can be classified depending on the type of surface studied. Many types of surface topographies are considered when frequency-based errors are studied. However, turned surface topography is not comprehensively studied when data processing errors caused by false estimation (definition and suppression) of selected surface features (form or noise) are analysed. In the present work, the effects of the application of various methods (regular Gaussian regression, robust Gaussian regression, and spline and fast Fourier Transform filters) for the suppression of high-frequency measurement noise from the raw measured data of turned surface topography are presented and compared. The influence and usage of commonly used available commercial software, e.g., autocorrelation function, power spectral density, and texture direction, which function on the values of areal surface topography parameters from selected (ISO 25178) standards, are also introduced. Analysed surfaces were measured with a stylus or via non-contact (optical–white light interferometry) methods. It was found that the characterisation of surface topography, based on the analysis of selected features, can be crucial in reducing measurement and data analysis errors when various filters are applied. Moreover, the application of common functions can be advantageous when feature-based studies are proposed for both profile and areal data processing. MDPI 2022-12-08 /pmc/articles/PMC9784540/ /pubmed/36559990 http://dx.doi.org/10.3390/s22249622 Text en © 2022 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Podulka, Przemysław
Feature-Based Characterisation of Turned Surface Topography with Suppression of High-Frequency Measurement Errors
title Feature-Based Characterisation of Turned Surface Topography with Suppression of High-Frequency Measurement Errors
title_full Feature-Based Characterisation of Turned Surface Topography with Suppression of High-Frequency Measurement Errors
title_fullStr Feature-Based Characterisation of Turned Surface Topography with Suppression of High-Frequency Measurement Errors
title_full_unstemmed Feature-Based Characterisation of Turned Surface Topography with Suppression of High-Frequency Measurement Errors
title_short Feature-Based Characterisation of Turned Surface Topography with Suppression of High-Frequency Measurement Errors
title_sort feature-based characterisation of turned surface topography with suppression of high-frequency measurement errors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784540/
https://www.ncbi.nlm.nih.gov/pubmed/36559990
http://dx.doi.org/10.3390/s22249622
work_keys_str_mv AT podulkaprzemysław featurebasedcharacterisationofturnedsurfacetopographywithsuppressionofhighfrequencymeasurementerrors