Cargando…

Optimizing Antibody Affinity and Developability Using a Framework–CDR Shuffling Approach—Application to an Anti-SARS-CoV-2 Antibody

The computational methods used for engineering antibodies for clinical development have undergone a transformation from three-dimensional structure-guided approaches to artificial-intelligence- and machine-learning-based approaches that leverage the large sequence data space of hundreds of millions...

Descripción completa

Detalles Bibliográficos
Autores principales: Gopal, Ranjani, Fitzpatrick, Emmett, Pentakota, Niharika, Jayaraman, Akila, Tharakaraman, Kannan, Capila, Ishan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784564/
https://www.ncbi.nlm.nih.gov/pubmed/36560698
http://dx.doi.org/10.3390/v14122694
Descripción
Sumario:The computational methods used for engineering antibodies for clinical development have undergone a transformation from three-dimensional structure-guided approaches to artificial-intelligence- and machine-learning-based approaches that leverage the large sequence data space of hundreds of millions of antibodies generated by next-generation sequencing (NGS) studies. Building on the wealth of available sequence data, we implemented a computational shuffling approach to antibody components, using the complementarity-determining region (CDR) and the framework region (FWR) to optimize an antibody for improved affinity and developability. This approach uses a set of rules to suitably combine the CDRs and FWRs derived from naturally occurring antibody sequences to engineer an antibody with high affinity and specificity. To illustrate this approach, we selected a representative SARS-CoV-2-neutralizing antibody, H4, which was identified and isolated previously based on the predominant germlines that were employed in a human host to target the SARS-CoV-2-human ACE2 receptor interaction. Compared to screening vast CDR libraries for affinity enhancements, our approach identified fewer than 100 antibody framework–CDR combinations, from which we screened and selected an antibody (CB79) that showed a reduced dissociation rate and improved affinity against the SARS-CoV-2 spike protein (7-fold) when compared to H4. The improved affinity also translated into improved neutralization (>75-fold improvement) of SARS-CoV-2. Our rapid and robust approach for optimizing antibodies from parts without the need for tedious structure-guided CDR optimization will have broad utility for biotechnological applications.