Cargando…
Optimizing Antibody Affinity and Developability Using a Framework–CDR Shuffling Approach—Application to an Anti-SARS-CoV-2 Antibody
The computational methods used for engineering antibodies for clinical development have undergone a transformation from three-dimensional structure-guided approaches to artificial-intelligence- and machine-learning-based approaches that leverage the large sequence data space of hundreds of millions...
Autores principales: | Gopal, Ranjani, Fitzpatrick, Emmett, Pentakota, Niharika, Jayaraman, Akila, Tharakaraman, Kannan, Capila, Ishan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784564/ https://www.ncbi.nlm.nih.gov/pubmed/36560698 http://dx.doi.org/10.3390/v14122694 |
Ejemplares similares
-
Enhancing antibody affinity through experimental sampling of non-deleterious CDR mutations predicted by machine learning
por: Clark, Thomas, et al.
Publicado: (2023) -
Orthogonal immunoassays for IgG antibodies to SARS-CoV-2 antigens reveal that immune response lasts beyond 4 mo post illness onset
por: Sasisekharan, Varun, et al.
Publicado: (2021) -
Antibody humanization—the Influence of the antibody framework on the CDR-H3 loop ensemble in solution
por: Fernández-Quintero, Monica L, et al.
Publicado: (2019) -
CDR2 antigen and Yo antibodies
por: Totland, Cecilie, et al.
Publicado: (2010) -
Affinity Maturation of Monoclonal Antibody 1E11 by Targeted Randomization in CDR3 Regions Optimizes Therapeutic Antibody Targeting of HER2-Positive Gastric Cancer
por: Ko, Bong-Kook, et al.
Publicado: (2015)