Cargando…
Increased White Matter Coherence Following Three and Six Months of Medical Cannabis Treatment
BACKGROUND: Previous studies have demonstrated abnormal white matter (WM) microstructure in recreational cannabis consumers; however, the long-term impact of medical cannabis (MC) use on WM coherence is unknown. Accordingly, this study assessed the longitudinal impact of MC treatment on WM coherence...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Mary Ann Liebert, Inc., publishers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784607/ https://www.ncbi.nlm.nih.gov/pubmed/36367574 http://dx.doi.org/10.1089/can.2022.0097 |
Sumario: | BACKGROUND: Previous studies have demonstrated abnormal white matter (WM) microstructure in recreational cannabis consumers; however, the long-term impact of medical cannabis (MC) use on WM coherence is unknown. Accordingly, this study assessed the longitudinal impact of MC treatment on WM coherence. Given results from preclinical studies, we hypothesized that MC treatment would be associated with increased fractional anisotropy (FA) and reduced mean diffusivity (MD). METHODS: As part of a larger, longitudinal investigation, patients interested in treating at least one medical condition with commercially available MC products of their choosing were assessed before initiating MC use (baseline n=37; female=25, male=12) and following three (n=31) and six (n=22) months of treatment. WM coherence was assessed via diffusion tensor imaging for bilateral regions of interest including the genu of the corpus callosum, anterior limb of the internal capsule, external capsule, and anterior corona radiata, as well as an occipital control region not expected to change over time. RESULTS: In MC patients, FA values significantly increased bilaterally in several callosal regions relative to baseline following both 3 and 6 months of treatment; MD values significantly decreased in all callosal regions but only following 6 months of treatment. No significant changes in WM coherence were observed in the control region or in a pilot sample of treatment-as-usual patients (baseline n=14), suggesting that increased WM coherence observed in MC patients may be attributed to MC treatment as opposed to confounding factors. Interestingly, significant reductions in MD values correlated with higher cannabidiol (CBD) exposure but not Δ-9-tetrahydrocannabinol exposure. CONCLUSIONS: Overall, MC treatment was associated with increased WM coherence, which contrasts with prior research examining recreational cannabis consumers, likely related to inherent differences between recreational consumers and MC patients (e.g., product choice, age of onset). In addition, increased CBD exposure was associated with reduced MD following 6 months of treatment, extending evidence from preclinical research indicating that CBD may be neuroprotective against demyelination. However, additional research is needed to elucidate the clinical efficacy of MC treatment and the risks and benefits of long-term MC use. |
---|