Cargando…
Graph Attention Interaction Aggregation Network for Click-Through Rate Prediction
Click-through rate prediction is a critical task for computational advertising and recommendation systems, where the key challenge is to model feature interactions between different feature domains. At present, the main click-through rate prediction models model feature interactions in an implicit w...
Autores principales: | Zhang, Wei, Kang, Zhaobin, Song, Lingling, Qu, Kaiyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9784643/ https://www.ncbi.nlm.nih.gov/pubmed/36560060 http://dx.doi.org/10.3390/s22249691 |
Ejemplares similares
-
A Dual Adaptive Interaction Click-Through Rate Prediction Based on Attention Logarithmic Interaction Network
por: Li, Shiqi, et al.
Publicado: (2022) -
Attention-Based Aggregation Graph Networks for Knowledge Graph Information Transfer
por: Zhao, Ming, et al.
Publicado: (2020) -
GAIN: A Gated Adaptive Feature Interaction Network for Click-Through Rate Prediction
por: Liu, Yaoxun, et al.
Publicado: (2022) -
Advertising Click-Through Rate Prediction Based on CNN-LSTM Neural Network
por: Zhu, Danqing
Publicado: (2021) -
Prediction of Drug-Drug Interaction Using an Attention-Based Graph Neural Network on Drug Molecular Graphs
por: Feng, Yue-Hua, et al.
Publicado: (2022)